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Introduction: Stochastic Optimal Control trough Gradient Descent

We consider the following Stochastic Optimal Control (SOC) problem associated
with a Stochastic Di�erential Equation (SDE):

min
u

J(u) := E
[∫ T

0

G(Xt)dt + F (XT )

]
, (1)

dXt = b(Xt , ut)dt + σ(Xt , ut)dWt , t ∈ [0,T ] (2)

Xt : trajectory vector

ut : control vector

b(Xt , ut): controlled drift vector

σ(Xt , ut): controlled di�usion matrix

Wt : Brownian motion (white noise process)

=⇒ Optimize a functional of a trajectory of a SDE Xt through the control ut ,
including a random noise that a�ects the evolution of the system.
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Example: Resource Management

An oil drilling company has to balance the costs of extraction and of storage of oil in a
volatile energy market:

Trajectory: Volatile global oil price and quantity of stored (unsold) oil for the
company

Control: Quantities of instantaneously extracted, stored and sold oil

Figure: O�shore oil rig - Source: Unsplash Figure: Crude oil price during the year 2022
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Discretization and numerical scheme

Euler-Maruyama scheme

min
θ

J̄(ūθ) := E
[ N−1∑

k=0

(tk+1 − tk )G(X̄ θ
tk+1

) + F (X̄ θ
tN
)
]
, (3)

X̄ θ
tk+1

= X̄ θ
tk

+ (tk+1 − tk )b
(
X̄ θ
tk
, ūk,θ(X̄

θ
tk
)
)

+
√

tk+1 − tkσ
(
X̄ θ
tk
, ūk,θ(X̄

θ
tk
)
)
ξk+1, (4)

ξk ∼ N (0, Id2 ) i.i.d.

Time discretization of [0,T ]:

tk := kT/N, k ∈ {0, . . . ,N}, h := T/N

Control u with parameter θ using either one time-dependant neural network
either N distinct neural networks: utk = ūθ(tk ,Xtk ) or utk = ūθk (Xtk )

Since the process is Markovian, we assume the control depends only on the
running position Xt (instead of the whole previous trajectory (Xs)s∈[0,t]).
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Gradient Descent

The parameter θ is optimized by gradient descent:

Simulate batches of trajectories X̄ depending on the Brownian motion.

Compute ∇θ J̄ = ∇θ J̄(ūθn , (ξ
i,n+1
k )1≤k≤N); the gradient is computed by

automatic di�erentiation as the gradient w.r.t. to θ is tracked all along the
trajectory of the numerical scheme Giles and Glasserman (2005); Giles (2007)

In the literature:
SOCs are solved using speci�c techniques: Forward-Backward SDEs,
Hamilton-Jacobi-Bellman (HJB) optimality conditions, stochastic dynamic
programming. The resolution of SOCs by neural networks scales to the high
dimension, contrary to dynamic programming Gobet and Munos (2005); Han and
Weinan (2016); Bachouch et al. (2022); Laurière et al. (2023).
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u

· · · Xtk SDE Xtk+1 SDE Xtk+2 · · ·

G G G

· · · + + + · · ·

Figure: Markovian Neural Network with one control.

utk utk+1

· · · Xtk SDE Xtk+1 SDE Xtk+2 · · ·

G G G

· · · + + + · · ·

Figure: Markovian neural network with one control for every time step.
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Very deep neural networks

If the control is applied at many discretization times, then the Markovian Neural
Network becomes a very deep neural network, di�cult to train directly.

Adding noise during training is known to improve the learning procedure
Neelakantan et al. (2015); Anirudh Bhardwaj (2019):

Gradient Langevin Algorithm

For some choice of Preconditioner rule P (Adam, RMSprop...), step size γn+1 and
and computed gradient gn+1:

θn+1 = θn − γn+1Pn+1 · gn+1+σn+1
√
γn+1N (0,Pn+1) (5)

=⇒ per-dimension adaptive noise rate.

Bras (2022): the deeper the network is, the greater are the gains provided by
Langevin algorithms; introduces the Layer Langevin algorithm, consisting in
adding Langevin noise only to the deepest layers.

=⇒ Analysis was conducted especially for deep architectures in image classi�cation.
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Our objectives

Side-by-side comparison of non-Langevin/Langevin optimizers on di�erent SOC
problems: �shing quotas, �nancial hedging, energy management.

If using multiple controls (second case), explore the bene�ts of Layer-Langevin.
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Fishing quotas, Laurière et al. (2023)

Fish biomass Xt ∈ Rd1 with:

Inter-species interaction κXt

Fishing following imposed quotas ut

Objective: keep Xt close to an ideal state Xt .
Figure: Source: Unsplash

dXt = Xt ∗ ((r − ut − κXt)dt + ηdWt)

J(u) = E
[∫ T

0

(|Xt −Xt |2 − ⟨α, ut⟩)dt + β[u]0,T
]
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Figure: Example of a "�sh" trajectory of Xt ∈ R5.
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Results for Fishing quotas
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Figure: Comparison of Adam et L-Adam algorithms during the training for the �shing control
problem with N = 20, 50, 100 respectively. J is estimated over 50× 512 trajectories. A zoom
on the last epochs is given.

Table: Best performance

N = 20 N = 50 N = 100
Adam 0.3910 0.3912 0.4029
L-Adam 0.3886 0.3864 0.4011
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Figure: Comparison of Langevin algorithms with their non-Langevin counterparts during the
training for the �shing control problem with N = 50.
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Figure: Training of the �shing problem with multiple controls with N = 10
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Deep Financial Hedging, Buehler et al. (2019)

We aim to replicate some payo� Z de�ned on some
portfolio St by trading some of the assets with trans-
action costs; the control ut is the amount of held
assets. The objective is

Figure: Source: Unsplash

J(u) = ν

(
−Z +

N−1∑
k=0

⟨utk ,Stk+1 − Stk ⟩ −
N∑

k=0

⟨ctr , Stk ∗ |utk − utk−1 |⟩
)

(6)

where ν is a convex risk measure. We consider the assets St to be follow a Heston
model and are tradable along with variance swap options.
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Results for Deep Hedging
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Figure: Comparison of algorithms during the training for the deep hedging control problem
with N = 30, 50, 50 respectively

Table: Best performance

Adam, N = 30 Adam, N = 50 Adadelta, N = 50
Vanilla 0.4448 0.6355 0.4671
Langevin 0.4306 0.4182 0.3773
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Figure: Training of the deep hedging problem with multiple controls with N = 10

Table: Best performance

Adam RMSprop Adadelta
Vanilla 0.6626 0.5618 1.2900
Langevin 0.7278 0.4441 0.9250

Layer Langevin 30% 0.6004 0.4102 0.8554
Layer Langevin 90% 0.6377 � �
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Resource Management and Oil Drilling, Goutte et al. (2018); Gaïgi et al.
(2021)

An oil driller has to balance the costs of extraction Et , storage St in a volatile energy
market with oil price Pt :

dPt = µPtdt + ηPtdWt

J(q) = −E
[∫ T

0

e−ρrU
(
qvr Pr + qv,sr (1− ε)Pr − (qvr + qsr )ce(Er )− cs(Sr )

)
dr

]
,

Et =

∫ t

0

(qvr + qsr )dr , St =

∫ t

0

(qsr − qv,sr )dr

where U is the utility function and qt = (qvt , q
s
t , q

v,s
t ) is the control (extracted, stored,

sold from storage).
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Results for Oil Drilling
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Figure: Comparison of algorithms during the training for the oil drilling control problem with N = 50
Table: Best performance

Adam RMSprop Adadelta
Vanilla -0.1729 -0.1985 -0.1649
Langevin -0.1915 -0.2032 -0.1929
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Conclusion

In various problems, Langevin and Layer Langevin algorithms show improvements
in comparison with their respective non-Langevin counterparts.

Gains depend on the setting and optimizer; we observe that gains are limited or
null for the RMSprop algorithm.

For SOC with multiple controls, we proved the gains of Layer Langevin algorithms
with a small number of layers (∼10%-30%).
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Thank you for your attention !
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