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Abstract

Stochastic Gradient Descent Langevin Dynamics (SGLD) algorithms, which add noise to

the classic gradient descent, are known to improve the training of neural networks in

some cases where the neural network is very deep. In this paper we study the possibil-

ities of training acceleration for the numerical resolution of stochastic control problems

through gradient descent, where the control is parametrized by a neural network. If the

control is applied at many discretization times then solving the stochastic control prob-

lem reduces to minimizing the loss of a very deep neural network. We numerically show

that Langevin and Layer-Langevin algorithms improve the training on various stochastic

control problems like hedging and resource management, and for different choices of

gradient descent methods.

Stochastic Optimal Control through Gradient Descent

We consider the following Stochastic Optimal Control (SOC) problem associated with

a Stochastic Differential Equation (SDE):

min
u

J(u) := E

[∫ T

0
G(Xt)dt + F (XT )

]
, (1)

dXt = b(Xt, ut)dt + σ(Xt, ut)dWt, t ∈ [0, T ] (2)

where Xt is the trajectory vector, ut is the control vector, b(Xt, ut) is the controlled drift
vector, σ(Xt, ut) is the controlled diffusion matrix and Wt is a Brownian motion. We aim

to optimize a functional of a trajectory of a SDE Xt through the control ut, including a

random noise that affects the evolution of the system.

The corresponding Euler-Maruyama numerical scheme is given by:

min
θ

J̄(ūθ) := E
[ N−1∑

k=0

(tk+1 − tk)G(X̄θ
tk+1

) + F (X̄θ
tN

)
]
, (3)

X̄θ
tk+1

= X̄θ
tk

+ (tk+1 − tk)b
(
X̄θ

tk
, ūk,θ(X̄θ

tk
)
)

+
√

tk+1 − tkσ
(
X̄θ

tk
, ūk,θ(X̄θ

tk
)
)
ξk+1, (4)

ξk ∼ N (0, Id2) i.i.d.

Time discretization of [0, T ]: tk := kT/N, k ∈ {0, . . . , N}, h := T/N.

Control u with parameter θ using either one time-dependant neural network either

N distinct neural networks: utk
= ūθ(tk, Xtk

) or utk
= ūθk(Xtk

).
Since the process is Markovian, we assume the control depends only on the running

position Xt (instead of the whole previous trajectory (Xs)s∈[0,t]).

The parameter θ is optimized by gradient descent:

Simulate batches of trajectories X̄ depending on the Brownian motion.

Compute ∇θJ̄ = ∇θJ̄(ūθn
, (ξi,n+1

k )1≤k≤N); the gradient is computed by automatic

differentiation as the gradient w.r.t. to θ is tracked all along the trajectory of the

numerical scheme Giles and Glasserman (2005); Giles (2007).

In the literature: SOCs are solved using specific techniques: Forward-Backward SDEs,

Hamilton-Jacobi-Bellman (HJB) optimality conditions, stochastic dynamic programming.

The resolution of SOCs by neural networks scales to the high dimension, contrary to

dynamic programming Gobet and Munos (2005); Han and E (2016); Bachouch et al.

(2022); Laurière et al. (2023).

Training very deep neural networks

If the control is applied at many discretization times, then the Markovian Neural

Network becomes a very deep neural network, difficult to train directly.

Adding noise during training is known to improve the learning procedure

Neelakantan et al. (2015); Anirudh Bhardwaj (2019). For some choice of

Preconditioner rule P (Adam, RMSprop...), the preconditioned Gradient Langevin

algorithm reads:

θn+1 = θn − γn+1Pn+1 · gn+1 + σn+1
√

γn+1N (0, Pn+1). (5)

Bras (2022): the deeper the network is, the greater are the gains provided by

Langevin algorithms; introduces the Layer Langevin algorithm, consisting in adding

Langevin noise only to the deepest layers.

The analysis was conducted especially for deep architectures in image classification.

Objectives :

Side-by-side comparison of non-Langevin/Langevin optimizers on different SOC

problems: fishing quotas, financial hedging, energy management.

If using multiple control networks, we explore the benefits of Layer-Langevin.

Figure 1. Markovian neural network with single control network

Simulations on three different SOC models

Fishing quotas Laurière et al. (2023): A fish biomass Xt ∈ Rd1 evolves with inter-species

interaction κXt and with controlled fishing ut. The objective is to keep Xt close to some

ideal state Xt, reading:

dXt = Xt ∗ ((r − ut − κXt)dt + ηdWt) ,

J(u) = E

[∫ T

0
(|Xt − Xt|2 − 〈α, ut〉)dt + β[u]0,T

]
.

Deep financial hedging Buehler et al. (2019): We aim to replicate some payoffZ defined

on a portfolio St by trading some of the assets with transaction costs; the control ut is

the amount of held assets. The objective is

J(u) = ν

−Z +
N−1∑
k=0

〈utk
, Stk+1 − Stk

〉 −
N∑

k=0

〈ctr, Stk
∗ |utk

− utk−1|〉

 (6)

where ν is a convex risk measure. We consider the assets St to follow a Heston model

and are tradable along with variance swap options.

Resource Management and Oil Driling Goutte et al. (2018); Gaïgi et al. (2021): An oil

driller has to balance the costs of extraction Et, storage St in a volatile energy market

with oil price Pt:

dPt = µPtdt + ηPtdWt, Et =
∫ t

0
(qv

r + qs
r)dr, St =

∫ t

0
(qs

r − qv,s
r )dr,

J(q) = −E

[∫ T

0
e−ρrU

(
qv

rPr + qv,s
r (1 − ε)Pr − (qv

r + qs
r)ce(Er) − cs(Sr)

)
dr

]
where U is the utility function and qt = (qv

t , qs
t , qv,s

t ) is the control (extracted, stored, sold
from storage).
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Figure 2. Comparison of algorithms during the training for the deep hedging control problem with

N = 30, 50, 50 respectively
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Figure 3. Training of the deep hedging problem with multiple control networks with N = 10

Conclusion

In various problems, Langevin and Layer Langevin algorithms show improvements in

comparison with their respective non-Langevin counterparts.

Gains depend on the setting and optimizer; we observe that gains are more limited

for the RMSprop algorithm.

For SOC with multiple control networks, we proved the benefits of Layer Langevin

algorithms with a small number of layers (∼10%-30%).
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