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Optimization

Optimization problem

Let V :RY — R be C!, coercive (i.e. V(x) — 400 as |x| — co) and let
argmin(V) := {x € RY: V(x) = minga V}.

Objective : find argmin(V).
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Example : Regression as an optimization problem

- Data (u;, vi)1<i<n With N large; we want to find some function ® which can predict
v from v i.e. such that for all i/, ®(u;) =~ v; i.e. such that

N

~ Z |®(u;) — v;|? is small.
N=

— We reduce to a finite-dimensional problem: & is parametrized by a finite-dimensional
parameter: {¢x, x € R}

— A good choice of family of functions is neural functions thanks to their good
approximation properties:

Neural functions

q:"x(u) = Pagr,Br ©--:© Soal,ﬁl(u): [e7S] Mdk,dk,l(R)v ﬂk S de:
Poy, By P R%-1 — R%, u— oo - u+ Bk)

where ¢ : R — R is a non-linear function, applied coordinate by coordinate and where
the parameter x = (a1, B1, - - ., @R, BR)-
— The objective becomes

N
1

in = 0(u) = vi|? = V().

XE]IRZN,-ZI‘ x(ui) = vil (x)
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Figure: The sigmoid function
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Gradient descent

e Gradient descent algorithm : compute the gradient and "go down" the gradient with
decreasing step sequence (vx):

X0 € RY
Xn+1 = Xnp — 'Yn+1vv(Xn)~

e The continuous version is dXs = —V V/(X;)ds.
e With a a data regression problem, this would give

N

Xn+1 = Xn — Yn+1 va (‘d)x(ui) - Vi|2) s
i=1

implying to compute all the gradients over the dataset at every iteration n. Instead we
do the Stochastic Gradient Descent (SGD) algorithm:

Xnt1 = Xn — Yn+1Vx (‘¢X(uin+1) = Vi1 ‘2) ’

where ipy1 is chosen uniformly at random at every iteration.
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We replace:
Xn4+1 = Xn — Yn+1 (VV(X") + §n+1) s

where E[Cny1|xn] = 0 (martingale increments).

x0 Xk X0 Xk

e Problem : x, can be "trapped" !
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Langevin Equation

e We add a white noise to x,, hoping to escape traps :

Xnt1 = xn — Yn+1 (VV(xn) + Cnr1) +/Anr10€ns1,  Envr ~ N(O,lg).

= called SGLD algorithms (Stochastic Gradient Langevin Dynamics)
e The continuous version becomes:

dXs = =V V/(Xs)ds +odWs (Langevin Equation)

where (Ws) is a Brownian motion and o > 0.
e It is invariant measure is the Gibbs measure

—1
vo(x)dx = Cge_2v(x)/‘72 dx, C,:= (/ e_2V(X)/‘72 dx) .
Rd

e Exogenous noise odW; added to escape local minima (’traps’) and explore the state
space.

e For small o, v, is concentrated around argmin(V):

Solve the Langevin equation = approximation of v, = approximation of
argmin(V).
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Simulated Annealing algorithms

e We have v, — argmin(V) in law.
o—0

e One possibility : solve the Langevin equation for small o
e Another possibility : make o — 0 while iterating the algorithm :

Xn+1 = Xn — Yn+1VV(xn) +a(v1 + - + ”r'n+1)0'v Yor1€nt1,  Env1 ~ N(0,1g),

where a(t) is decreasing and a(t) = 0.
—

The continuous version becomes :

Langevin-Simulated Annealing Equation

CIXt = —VV(Xt)dt + a(t)ath,

o The 'instantaneous’ invariant measure v, (dx) o< exp (—2V(x)/(a*(t)o?))
converges itself to argmin(V)

o Schedule a(t) = Alog~1/2(t) then X; 2 argmin(V) in law [Chiang-Hwang
1987], [Miclo 1992]
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Multiplicative noise

o Noise 0 > 0 = isotropic, homogeneous noise = not adapted to V
Instead : o(X¢) € My(R) is a matrix depending on the position

o In Machine Learning literature, a good choice is o(x)o(x)T ~ (V2V(x))~! as in
the Newton algorithm.

SGLD often used in ML literature, but no general theoretical guarantee of

[

convergence.

dYe = —(o0 T VV)(Y:)dt + a(t)o(Ye)dW; + | a%(t) Za ao T)(Ye)i dt

1<i<d
correction term a2(t)T(Y:)
A

a(t) = ——,
V/log(t)

o Correction term so that v,y o exp (—2V/(x)/a*(t)) is still the "instantaneous"
invariant measure
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Proofs in the paper

e We proved the convergence of Y; and Y; to v* = Oargmin(v) for the L1-Wasserstein
distance, where Y is the discretization of Y:

Yor = Yo + i1 (—UUTVV(VtM) + a2 () T(Ve,) + Ck+1) + a(tir1)0( Vi y v/ Trr1€k+1,
Eky1 ~ N(0,1g).

o We use the L1-Wasserstein distance:
Wi (71, m2) = sup {/d F(x)(m1 —m2)(dx): f:RY =R, [flLp = 1}.
R

and we show that Wi (Y, v*) — 0 and Wy (s, v*) — 0. We have
Wi(Ye,v") < Wi(Ye, Va(r) + Wa(Va(r), ™)
The convergence is limited by the slowness of a(t) as
Wi (Va(e), v*) < a(t) < log=*/2(t). In fact we also prove for every o € (0,1):
Wl(ytxo,l/a(t)) < Co max(1 + |xol, V(Xo))t ™«
Wi(V2, v306)) < Ca max(1 + [xol, V3(X0))t ™.
Assumptions:
@ V is strongly convex outside some compact set and VV is Lipschitz
@ o is bounded and elliptic: oo > ogly, oo > 0.

© Decreasing steps (v5) for the Euler scheme, with 3= va = 00, 3,72 < oo,
Mni=>+-+7n.
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Annealing ellipticity and "by plateaux" process

e To apply ergodicity properties, we require o to be elliptic however the ellipticity of
a(t)o(Y:) — 0 as t — oo.
e Instead, we consider the plateau SDE where a is piecewise constant:

de = 70’UTVV(Xt)dt -+ an+IU(Xt)th + 3%+1T(Xt)dt, te [Tn7 Tn+1),
ap = Alog™Y/2(T,)
And we apply the ergodicity properties on each plateau, giving a recurrence relation.
e In the proof, we investigate the dependence in a, and the factor e Pan(Tn=Th—1),
Pa, = e Ca/a; appears, so we need to choose a, = Alog™1/2(T,).

£

—— Non plateau case
——  Plateau case

9

T T2 T3 Ta

Pierre BRAS Stochastic grandient descent and Langevin-simulated annealin



Thank you for your attention !
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