Stochastic grandient descent and Langevin-simulated annealing algorithms

Pierre BRAS

Sorbonne Université

May 24, 2022

Pierre BRAS Stochastic grandient descent and Langevin-simulated annealing a

Optimization problem

Let $V : \mathbb{R}^d \to \mathbb{R}$ be C^1 , coercive (i.e. $V(x) \to +\infty$ as $|x| \to \infty$) and let $argmin(V) := \{x \in \mathbb{R}^d : V(x) = min_{\mathbb{R}^d} V\}$

Objective : find argmin(V).

 $\langle \overline{m} \rangle$ \rightarrow $\langle \overline{m} \rangle$ \rightarrow $\langle \overline{m} \rangle$

 QQ

重

Example : Regression as an optimization problem

– Data ($u_i, v_i)_{1 \leq i \leq N}$ with N large; we want to find some function Φ which can predict ν from u i.e. such that for all $i, \Phi(u_i) \approx v_i$ i.e. such that

$$
\frac{1}{N}\sum_{i=1}^N|\Phi(u_i)-v_i|^2
$$
 is small.

 $-$ We reduce to a finite-dimensional problem: Φ is parametrized by a finite-dimensional parameter: $\{\phi_x, x \in \mathbb{R}^d\}.$

 A good choice of family of functions is neural functions thanks to their good approximation properties:

Neural functions

$$
\Phi_{\mathsf{x}}(u) = \varphi_{\alpha_{\mathsf{R}},\beta_{\mathsf{R}}}\circ\ldots\circ\varphi_{\alpha_{1},\beta_{1}}(u), \qquad \alpha_{k} \in \mathcal{M}_{d_{k},d_{k-1}}(\mathbb{R}), \ \beta_{k} \in \mathbb{R}^{d_{k}},
$$

$$
\varphi_{\alpha_{k},\beta_{k}}: \mathbb{R}^{d_{k-1}} \to \mathbb{R}^{d_{k}}, \qquad u \mapsto \varphi(\alpha_{k} \cdot u + \beta_{k})
$$

where $\varphi : \mathbb{R} \to \mathbb{R}$ is a non-linear function, applied coordinate by coordinate and where the parameter $x = (\alpha_1, \beta_1, \ldots, \alpha_R, \beta_R)$. - The objective becomes

$$
\min_{x\in\mathbb{R}^d}\frac{1}{N}\sum_{i=1}^N|\Phi_x(u_i)-v_i|^2=:V(x).
$$

イロメ イ押 トイヨ トイヨメー

 QQ

GB.

Figure: The sigmoid function

 \leftarrow \oplus \rightarrow

Þ

a. \sim \prec

 \Rightarrow Þ 299

• Gradient descent algorithm : compute the gradient and "go down" the gradient with decreasing step sequence (γ_k) :

$$
x_0 \in \mathbb{R}^d
$$

$$
x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n).
$$

- The continuous version is $dX_s = -\nabla V(X_s)ds$.
- With a a data regression problem, this would give

$$
x_{n+1} = x_n - \gamma_{n+1} \sum_{i=1}^N \nabla_x \left(|\Phi_x(u_i) - v_i|^2 \right),
$$

implying to compute all the gradients over the dataset at every iteration n . Instead we do the Stochastic Gradient Descent (SGD) algorithm:

$$
x_{n+1} = x_n - \gamma_{n+1} \nabla_x (|\Phi_x(u_{i_{n+1}}) - v_{i_{n+1}}|^2),
$$

where i_{n+1} is chosen uniformly at random at every iteration.

メロメ メ押 トメミ トメミメー

 QQ

 \equiv

We replace:

$$
x_{n+1} = x_n - \gamma_{n+1} \left(\nabla V(x_n) + \zeta_{n+1} \right),
$$

where $\mathbb{E}[\zeta_{n+1}|x_n]=0$ (martingale increments).

• Problem : x_n can be "trapped" !

 299

Ξ

• We add a white noise to x_n , hoping to escape traps :

$$
x_{n+1} = x_n - \gamma_{n+1} \left(\nabla V(x_n) + \zeta_{n+1} \right) + \sqrt{\gamma_{n+1}} \sigma \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, I_d).
$$

 \implies called SGLD algorithms (Stochastic Gradient Langevin Dynamics) • The continuous version becomes:

$$
dX_s = -\nabla V(X_s)ds + \sigma dW_s
$$
 (Langevin Equation)

where (W_s) is a Brownian motion and $\sigma > 0$. • It is invariant measure is the Gibbs measure

$$
\nu_{\sigma}(x)dx=C_{\sigma}e^{-2V(x)/\sigma^2}dx,\quad C_{\sigma}:=\left(\int_{\mathbb{R}^d}e^{-2V(x)/\sigma^2}dx\right)^{-1}.
$$

• Exogenous noise σdW_t added to escape local minima ('traps') and explore the state space.

• For small σ , ν_{σ} is concentrated around argmin(V). Solve the Langevin equation \implies approximation of $\nu_{\sigma} \implies$ approximation of $argmin(V)$.

イロメ イ押 トイヨ トイヨメー

 η are 三.

- \bullet We have $\nu_{\sigma} \longrightarrow \operatorname*{argmin}(V)$ in law.
- One possibility : solve the Langevin equation for small σ
- Another possibility : make $\sigma \rightarrow 0$ while iterating the algorithm :

 $x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + a(\gamma_1 + \cdots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, I_d),$

where $a(t)$ is decreasing and $a(t) \longrightarrow 0$. The continuous version becomes :

Langevin-Simulated Annealing Equation

$$
dX_t = -\nabla V(X_t)dt + a(t)\sigma dW_t,
$$

- The 'instantaneous' invariant measure $\nu_{a(t)\sigma}(dx) \propto \exp\left(-2\,V(x)/(a^2(t)\sigma^2)\right)$ converges itself to argmin (V)
- Schedule $a(t) = A \log^{-1/2}(t)$ then $X_t \xrightarrow[t \to \infty]{} \text{argmin}(V)$ in law [Chiang-Hwang 1987], [Miclo 1992]

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

- Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V
- Instead $\sigma(X_t) \in \mathcal{M}_d(\mathbb{R})$ is a matrix depending on the position
- \bullet In Machine Learning literature, a good choice is $\sigma(x)\sigma(x)^\top \simeq (\nabla^2 V(x))^{-1}$ as in the Newton algorithm.
- SGLD often used in ML literature, but no general theoretical guarantee of convergence.

$$
dY_t = -(\sigma \sigma^\top \nabla V)(Y_t)dt + a(t)\sigma(Y_t)dW_t + \underbrace{\left(a^2(t)\left[\sum_{j=1}^d \partial_i(\sigma \sigma^\top)(Y_t)_{ij}\right]_{1 \leq i \leq d}\right)dt}_{\text{correction term } a^2(t)\Upsilon(Y_t)}
$$

 \bullet Correction term so that $\nu_{\mathsf{a}(t)} \propto \exp\left(-2\,V(\mathsf{x})/ \mathsf{a}^{2}(t)\right)$ is still the "instantaneous" invariant measure

医毛毛 化重变

 2990

Proofs in the paper

 \bullet We proved the convergence of Y_t and \bar{Y}_t to $\nu^\star = \delta_{\text{argmin}(V)}$ for the L^1 -Wasserstein distance, where \bar{Y} is the discretization of Y

$$
\bar{Y}_{t_{k+1}} = \bar{Y}_{t_k} + \gamma_{k+1} \left(-\sigma \sigma^\top \nabla V(\bar{Y}_{t_{k+1}}) + a^2(t) \Upsilon(\bar{Y}_{t_k}) + \zeta_{k+1} \right) + a(t_{k+1}) \sigma(\bar{Y}_{t_{k+1}}) \sqrt{\gamma_{k+1}} \xi_{k+1},
$$

$$
\xi_{k+1} \sim \mathcal{N}(0, I_d).
$$

 \bullet We use the L^1 -Wasserstein distance:

$$
\mathcal{W}_1(\pi_1,\pi_2)=\sup\left\{\int_{\mathbb{R}^d}f(x)(\pi_1-\pi_2)(dx): f:\mathbb{R}^d\to\mathbb{R}, [f]_{\text{Lip}}=1\right\}.
$$

and we show that $\mathcal{W}_1(Y_t, \nu^*) \to 0$ and $\mathcal{W}_1(\bar{Y}_t, \nu^*) \to 0$. We have

$$
\mathcal{W}_1(Y_t, \nu^{\star}) \leq \mathcal{W}_1(Y_t, \nu_{a(t)}) + \mathcal{W}_1(\nu_{a(t)}, \nu^{\star})
$$

The convergence is limited by the slowness of $a(t)$ as $\mathcal{W}_1(\nu_{\mathsf{a}(t)}, \nu^\star) \asymp \mathsf{a}(t) \asymp \mathsf{log}^{-1/2}(t)$. In fact we also prove for every $\alpha \in (0,1)$:

$$
\mathcal{W}_1(Y_t^{x_0}, \nu_{a(t)}) \leq C_{\alpha} \max(1+|x_0|, V(X_0))t^{-\alpha}
$$

$$
\mathcal{W}_1(\bar{Y}_t^{x_0}, \nu_{a(t)}) \leq C_{\alpha} \max(1+|x_0|, V^2(X_0))t^{-\alpha}.
$$

Assumptions:

- \bullet V is strongly convex outside some compact set and ∇V is Lipschitz
- **2** σ is bounded and elliptic: $\sigma \sigma^{\top} \ge \sigma_0 I_d$, $\sigma_0 > 0$.
- \bullet Decreasing steps (γ_n) for the Euler scheme, with $\sum_n \gamma_n = \infty$, $\sum_n \gamma_n^2 < \infty$, $\Gamma_n := \gamma_1 + \cdots + \gamma_n$ ←ロト ←何ト ←ヨト ←ヨト

重

 Ω

• To apply ergodicity properties, we require σ to be elliptic however the ellipticity of $a(t)\sigma(Y_t) \longrightarrow 0$ as $t \rightarrow \infty$.

• Instead, we consider the plateau SDE where a is piecewise constant:

$$
dX_t = -\sigma \sigma^\top \nabla V(X_t) dt + a_{n+1} \sigma(X_t) dW_t + a_{n+1}^2 \Upsilon(X_t) dt, \quad t \in [T_n, T_{n+1}),
$$

$$
a_n = A \log^{-1/2}(T_n)
$$

And we apply the ergodicity properties on each plateau, giving a recurrence relation. \bullet In the proof, we investigate the dependence in a_n and the factor $e^{-\rho_{a_n}(T_n-T_{n-1})}$, $\rho_{a_n}=e^{-C_2/a_n^2}$ appears, so we need to choose $a_n=A\log^{-1/2} (T_n)$.

 Ω

Thank you for your attention !

K ロ → K 御 → K 君 → K 君 → 「君 → の Q Q →