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Optimization

Optimization problem

Let V : Rd → R be C1, coercive (i.e. V (x) → +∞ as |x | → ∞) and let
argmin(V ) := {x ∈ Rd : V (x) = minRd V }.

Objective : �nd argmin(V ).
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Example : Regression as an optimization problem

� Data (ui , vi )1≤i≤N with N large; we want to �nd some function Φ which can predict
v from u i.e. such that for all i , Φ(ui ) ≈ vi i.e. such that

1

N

N∑
i=1

|Φ(ui )− vi |2 is small.

� We reduce to a �nite-dimensional problem: Φ is parametrized by a �nite-dimensional
parameter: {ϕx , x ∈ Rd}.
� A good choice of family of functions is neural functions thanks to their good
approximation properties:

Neural functions

Φx (u) = φαR ,βR
◦ . . . ◦ φα1,β1 (u), αk ∈ Mdk ,dk−1

(R), βk ∈ Rdk ,

φαk ,βk
: Rdk−1 → Rdk , u 7→ φ(αk · u + βk )

where φ : R → R is a non-linear function, applied coordinate by coordinate and where
the parameter x = (α1, β1, . . . , αR , βR).
� The objective becomes

min
x∈Rd

1

N

N∑
i=1

|Φx (ui )− vi |2 =: V (x).

Pierre BRAS Stochastic grandient descent and Langevin-simulated annealing algorithms



Figure: The sigmoid function
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Gradient descent

• Gradient descent algorithm : compute the gradient and "go down" the gradient with
decreasing step sequence (γk ):

x0 ∈ Rd

xn+1 = xn − γn+1∇V (xn).

• The continuous version is dXs = −∇V (Xs)ds.
• With a a data regression problem, this would give

xn+1 = xn − γn+1

N∑
i=1

∇x
(
|Φx (ui )− vi |2

)
,

implying to compute all the gradients over the dataset at every iteration n. Instead we
do the Stochastic Gradient Descent (SGD) algorithm:

xn+1 = xn − γn+1∇x
(
|Φx (uin+1 )− vin+1 |

2
)
,

where in+1 is chosen uniformly at random at every iteration.
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We replace:
xn+1 = xn − γn+1 (∇V (xn) + ζn+1) ,

where E[ζn+1|xn] = 0 (martingale increments).

• Problem : xn can be "trapped" !
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Langevin Equation

• We add a white noise to xn, hoping to escape traps :

xn+1 = xn − γn+1 (∇V (xn) + ζn+1) +
√
γn+1σξn+1, ξn+1 ∼ N (0, Id ).

=⇒ called SGLD algorithms (Stochastic Gradient Langevin Dynamics)
• The continuous version becomes:

dXs = −∇V (Xs)ds +σdWs (Langevin Equation)

where (Ws) is a Brownian motion and σ > 0.
• It is invariant measure is the Gibbs measure

νσ(x)dx = Cσe
−2V (x)/σ2dx , Cσ :=

(∫
Rd

e−2V (x)/σ2dx

)−1

.

• Exogenous noise σdWt added to escape local minima ('traps') and explore the state
space.
• For small σ, νσ is concentrated around argmin(V ):
Solve the Langevin equation =⇒ approximation of νσ =⇒ approximation of
argmin(V ).
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Simulated Annealing algorithms

• We have νσ −→
σ→0

argmin(V ) in law.

• One possibility : solve the Langevin equation for small σ
• Another possibility : make σ → 0 while iterating the algorithm :

xn+1 = xn − γn+1∇V (xn) + a(γ1 + · · ·+ γn+1)σ
√
γn+1ξn+1, ξn+1 ∼ N (0, Id ),

where a(t) is decreasing and a(t) −→
t→0

0.

The continuous version becomes :

Langevin-Simulated Annealing Equation

dXt = −∇V (Xt)dt + a(t)σdWt ,

The 'instantaneous' invariant measure νa(t)σ(dx) ∝ exp
(
−2V (x)/(a2(t)σ2)

)
converges itself to argmin(V )

Schedule a(t) = A log−1/2(t) then Xt −→
t→∞

argmin(V ) in law [Chiang-Hwang

1987], [Miclo 1992]
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Multiplicative noise

Noise σ > 0 =⇒ isotropic, homogeneous noise =⇒ not adapted to V

Instead : σ(Xt) ∈ Md (R) is a matrix depending on the position

In Machine Learning literature, a good choice is σ(x)σ(x)⊤ ≃ (∇2V (x))−1 as in
the Newton algorithm.

SGLD often used in ML literature, but no general theoretical guarantee of
convergence.

dYt = −(σσ⊤∇V )(Yt)dt + a(t)σ(Yt)dWt +

a2(t)

 d∑
j=1

∂i (σσ
⊤)(Yt)ij


1≤i≤d

 dt

︸ ︷︷ ︸
correction term a2(t)Υ(Yt )

a(t) =
A√
log(t)

,

• Correction term so that νa(t) ∝ exp
(
−2V (x)/a2(t)

)
is still the "instantaneous"

invariant measure
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Proofs in the paper

• We proved the convergence of Yt and Ȳt to ν⋆ = δargmin(V ) for the L1-Wasserstein

distance, where Ȳ is the discretization of Y :

Ȳtk+1 = Ȳtk + γk+1

(
−σσ⊤∇V (Ȳtk+1 ) + a2(t)Υ(Ȳtk ) + ζk+1

)
+ a(tk+1)σ(Ȳtk+1 )

√
γk+1ξk+1,

ξk+1 ∼ N (0, Id ).

• We use the L1-Wasserstein distance:

W1(π1, π2) = sup

{∫
Rd

f (x)(π1 − π2)(dx) : f : Rd → R, [f ]Lip = 1

}
.

and we show that W1(Yt , ν⋆) → 0 and W1(Ȳt , ν⋆) → 0. We have

W1(Yt , ν
⋆) ≤ W1(Yt , νa(t)) +W1(νa(t), ν

⋆)

The convergence is limited by the slowness of a(t) as

W1(νa(t), ν
⋆) ≍ a(t) ≍ log−1/2(t). In fact we also prove for every α ∈ (0, 1):

W1(Y
x0
t , νa(t)) ≤ Cα max(1+ |x0|,V (X0))t

−α

W1(Ȳ
x0
t , νa(t)) ≤ Cα max(1+ |x0|,V 2(X0))t

−α.

Assumptions:

1 V is strongly convex outside some compact set and ∇V is Lipschitz
2 σ is bounded and elliptic: σσ⊤ ≥ σ0Id , σ0 > 0.
3 Decreasing steps (γn) for the Euler scheme, with

∑
n γn = ∞,

∑
n γ

2
n < ∞,

Γn := γ1 + · · ·+ γn.
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Annealing ellipticity and "by plateaux" process

• To apply ergodicity properties, we require σ to be elliptic however the ellipticity of
a(t)σ(Yt) −→ 0 as t → ∞.
• Instead, we consider the plateau SDE where a is piecewise constant:

dXt = −σσ⊤∇V (Xt)dt + an+1σ(Xt)dWt + a2n+1Υ(Xt)dt, t ∈ [Tn,Tn+1),

an = A log−1/2(Tn)

And we apply the ergodicity properties on each plateau, giving a recurrence relation.
• In the proof, we investigate the dependence in an and the factor e−ρan (Tn−Tn−1),

ρan = e−C2/a
2
n appears, so we need to choose an = A log−1/2(Tn).

T1 T2 T3 T4

t

a(t)

Non plateau case

Plateau case
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Thank you for your attention !
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