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Introduction - Optimization

Optimization problem

Let V : RY — R be C!, coercive (i.e. V(x) — 400 as |x| — oo) and let
argmin(V) := {x € R : V(x) = mings V}.

Objective : find argmin(V).

e Example : Regression as an optimization problem

—{d.: x€ Rd} family of functions ®y : R SR parametrized by x € R? (e.g. P«
is a neural function).

—for1 <i<N, (uj,v;) € RY x R : data associated to a regression problem

— We want to find x such that for all i, ®,(u;) =~ v;

N

1
— Find min — &, (u;) — vi)?2 =: min V().
min 5 @) = ) =i min V()
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Introduction - Gradient descent

e Gradient descent algorithm : compute the gradient and "go down" the gradient with
decreasing step sequence (vx):

X0 ERd

Xp+1 = Xn — ’Yn+1VV(Xn).

e The continuous version is dXs = —VV/(X;)ds.

x0 X* X0 Xk

e Problem : x, can be "trapped" !

Pierre BRAS and Gilles PAGES Convergence of Langevin-Simulated Annealing algorithms with



Introduction - Langevin Equation

e We add a white noise to x,, hoping to escape traps :

Xp+1 = Xn — 'Yn+1VV(Xn) ++/ "‘/'n+1i7fn+17 §n+1 ~ N(O, Id)-

= called SGLD algorithms (Stochastic Gradient Langevin Dynamics)
e The continuous version becomes:

dXs = =V V(Xs)ds +odWs (Langevin Equation)
where (Ws) is a Brownian motion and o > 0.

e Assuming that e=2V/9" ¢ [1(R9), it is invariant measure is the Gibbs measure

Vo (x)dx = C[,vefzv(’()/[’2 dx

-1
Cy = (/ e_zv(x)/”2 dx) .
Rd

e Exogenous noise odW; added to escape local minima (’traps’) and explore the state
space.

e For small o, vs is concentrated around argmin(V):

Solve the Langevin equation = approximation of v, = approximation of
argmin(V).

Pierre BRAS and Gilles PAGES Convergence of Langevin-Simulated Annealing algorithms with



Introduction - Simulated Annealing algorithms

o We have vz — argmin(V) in law.
o—0

e One possibility : solve the Langevin equation for small o
e Another possibility : make o — 0 while iterating the algorithm :

Xp+1 = Xn — 'Yn+1vv(Xn) + a(”/l + -+ "rn+1)0'\/ Yn+1€n+1s  En+1 ~ N(O: Id)7

where a(t) is decreasing and a(t) " 0.
—

The continuous version becomes :

Langevin-Simulated Annealing Equation

dX: = =V V(Xi)dt + a(t)odWs,

o The 'instantaneous’ invariant measure vy, (dx) oc exp (—2V/(x)/(a*(t)o?))
converges itself to argmin(V)

o Schedule a(t) = Alog—1/2(t) then X; =2 argmin(V) in law [Chiang-Hwang
o0
1987], [Miclo 1992]
o ( [Gelfand-Mitter 1991] proves the convergence of the algorithm (xp).
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Multiplicative noise

o Noise 0 > 0 = isotropic, homogeneous noise = not adapted to V
@ Instead : o(X¢) is a matrix depending on the position

o In Machine Learning literature, a good choice is o(x)o(x)T ~ (V2V(x))~! as in
the Newton algorithm.

d
dY: = —(o0 T VV)(Yo)dt + a(t)o(Ye)dW: + | a°(t) | D> di(ea ")(Ye); dt

J= 1<i<d

correction term

A
\/Iog(t)’

o Correction term so that v,y o exp (—2V/(x)/a?(t)) is still the "instantaneous"
invariant measure

a(t) =
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Objectives and assumptions

o Prove the convergence in of Y; and Y; to v* (supported by argmin(V))

o We use the L'-Wasserstein distance:
Wi (71, m2) = sup{/d f(x)(m1 —m2)(dx) : f: RY — R, [flup = 1} .
R

and we show that Wi ([Y:], v*) — 0 and Wy ([Y4], v*) — 0.
o We have
Wi(Ye,v*) < Wa(Ye, Vo)) + Wi (Va(r), v°)
The convergence is limited by the slowness of a(t) as
Wi (Va(e), v*) < a(t) < log=1/2(t). In fact we also prove

Wa(Y®, 1) < Camax(1 + o, V(X0))t ™
Wl(\_/tmv’/a(t)) < Camax(1 + [xol, VZ(XO))t_a

for every a < 1.

o Assumptions:
@ V is strongly convex outside some compact set
@ o is bounded and elliptic: oo > ooly, oo > 0.
© VV is Lipschitz
@ Decreasing steps (7,) for the Euler scheme, with 3=, v, = 0o, 3,72 < oo,
Mhi=vy1+-+7-
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Domino strategy

o ([Pages-Panloup 2020] proves the convergence of the Euler scheme of a general
SDE dX: = b(X:)dt + o(Xt)dW to the invariant measure 7* for Whi:

Wi (Xe, 7%) — 0.
@ Domino strategy: for f 1-Lipschitz (P, P: kernels of X, )_<):
Wi(KE, X)) < [BF(RE,) — BFOXE)
= [Py 0+ 0 Py F(x) — Pr, F()

=D Pyo-0Py_ o(Py —Py)oPr,_r,f(x)
k=1

n
SZ|P"/1O”'OP'Yk—lO(P'Yk_P’Yk)OPrn*rkf(X){’

A\ 4

O For large k = Error in small time = use bounds for || X} — X}||,
@ For small k = Ergodicity contraction properties using the convexity of V outside
a compact set and the ellipticity of o [Wang 2020]:

Yt > to, Wi(X[, X)) < Ce™ ™ |x — y]
= Wi(X[,7") < Ce” PH(1 + |x]).
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Contraction property with ellipticity parameter a

e Problems before applying the domino strategy: non-homogeneous Markov chain +
the ellipticity parameter fades away in a(t).
—> What is the dependency of the constants C and p in the ellipticity ?

Consider dX; = b(X:)dt + ac(X¢)dWs, a > 0 with invariant measure v,.

Wi (X5, XY) < CeC1/32|x —yle Pt pyi= 67C2/32

Wi (X va) < Cecl/aze_p"'t]E|Va — x|
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"By plateaux" process

We first consider the plateau SDE:

dXt = 7O'O'TVV(Xt)dt =+ a,,+1cr(Xt)th + a%+1T(Xt)dt, te [Tn7 TI7+1)7
an = Alog_l/z(T,,)

We apply the contraction property on every plateau:

2 — —
WAXT, 3 Vapia (XT,) < Ce@/orae ™o T =TI [y, ) = X, | |X7, ]

We integrate over the law of X1, giving

Wl([xﬁ,llv Van\l)

IN

2
Ce€1/%ni1 e Pansa (Tnt1— T")Wl([Xf,(—oL Van1)
n

IN

CeC1/83+1 e Pant1 (Tas1—Th) (Wl([X;:], I/an) + V\}]_(I/an7 Vani1 )) .
And we iterate:

Wl([XXO ]a Van+1) S /an+1W1(V3n7 V3n+1) + /J'IH»I:U'HWI(Vanu Van) + -

Thia
+ pnt1 s Wi (Vag, Vay ) + fnt1 -+ 11 W1 (0xg 5 Vag ),
Un = Cecl/aﬁe_pan(Tn_Tn—l)‘

Wi (va,, Van+1) < C(an — any1)-
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—— Non plateau case
——  Plateau case

el

t
T: T2 T3 Ta

fin = CeC/The=Pan(To=Too1) ) o=Ca/a},

We now choose
A

Vog(Ty)’

Tot1— Th = Cnﬁ,ﬁ >0, ap= A > 0 large enough

yielding
Wi([X7) 1 vania) < C(1+ [0l )pnan,
where p1, = O (exp(—Cn™)). And
Wi(IXPE,1v") SWi(IXT, T Vania) + WiVag,a, v7) < Can(1 + |xol)-

Thi
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Convergence of Y; with continuously decreasing (a(t))

o We apply domino strategy to bound Wy (Xt, Y:):

Tn Tn+1

| | | | | | | | | | |

I | | — | | | 1 | | 1
ol Tn+1 -T

o for f Lipschitz-continuous and fixed T > 0:

[BFOG, 1) ~EF(YF, 1)

(Thea—Th—T)/]

4 Y X, X,
< ‘P(k—l)%Tn ° (Pw,Tn-#(k—l)v — Py e PTHL—Tn—kvf(X)‘
k=1
(Thsa—Tn)/~] X
% % X, ,n
+ > ‘P(kfl)m © (P 7, (k—1)y = P57 0 PmrTrkvf(X)’
k=[(Tata—Ta—T)/v]+1

o for k=1,...,(Tnst1 — Tn — T)/v, the kernel P5" has an exponential

Tot1—Th—ky
contraction effect on time > T:

% X, X,
(P ey = P 0 P iy P

X,n X, X
=EPTT 1k (X)) = EP)T<,,+17Tn7k7,nf(yw,rn+(k—1)w)\

—2

< Ce€rana e_Pn+1(Tn+1—Tn—k'Y)[f']Lip]E|X’>Y<7" _ Y«T,Tn+(k—1)w|
—2

< Ce€1ans e*Pn+1(Tn+1*Tn*k"/)[f]l_ipﬁ(an —ant1)
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e Bounds for the error on time intervals no longer than T:

2l

 Tnt1 — Th — ky

PX:moP}" F(x)| < Cap 4y (an—ant1)[fluip

Tota—To—ky V(x)

Y
|(P%Tn+(k—1)w

using Taylor formula up to order 4.
e We apply on each time interval [Ty, Thy1) and obtain the recursive inequality
Cia 3 -1
Wi 1 YF 1)) < G2 (a0 — apia)ohy V().
With x, := X;‘:, Yn = Y;::
([XX‘::H] [Y;(:H]) = Wl([X—);n:rlan] [YTnH*Tn,Tn])
WX L X s DX LY D)

_2 —2
< Cerni1e=Prta(Tor1—Tn) Wl([X;‘:]. [y;_g]) + CeC1ni1(a, — an+1)P;+11 IEV(Y;‘:),

Hnt1
m An+1
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The convergence is controlled by

Cra 2 -1
Anp1 = Ce™n+1(a, — an+1)p,,+1

with
A
ap ¥ ———
v/ log(T»)
T,,+1 jad Cn*8+1
1
ap— a = —
n n+1 N Iog3/2(n)

—2
eclan+1 ~ n(,3+1)C1/A2

prt = eC2aa ~ p(BH+1)Ga /A
— Choosing A > 0 large enough yields the convergence to 0 of
Wa(IXP, 1 IY7,,]) at rate n—(1=(B+1)(C1+C2)/A%)  Then:
WY, 1 vars) < WY L IXS 1)+ Wa(IX32, ] vai)
< CV(x0)n~ - (B+1)(C+C2)/A%)
WY, Lv") <Y L IXE, D) + WaX? 1, v™) £ CV(x0)an

Thia Thi1 Thta
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Convergence of the Euler scheme Y; with decreasing steps 7,

ypo

Mnya

~nt+1 decreasing to 0, Z% = oo, 273 <oo, Th="1+ -+ n
n n

= ?rn + Ynt1 <ba(rn)(?r)<,?) + <"+1(V|z<,? )) + a(ln)o( \_/IZ(:)(WrHH. - Wr,)

Vx, E[¢a(x)] = 0.

We adopt the same strategy of proof to bound Wy (X, Y).
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Thank you for your attention !
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