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Introduction

o We consider the following SDE in R along its one-step Euler-Maruyama scheme:

SDE and Euler scheme

X5 =x€eR?, dXX = by (XX)dt + o1(X))dW,
XX = x + thy(x) + o1(x)Ws.

o We consider the total variation distance on P(R?) as

Total variation distance

drv (71, m2) = sup {/ fdmy —/ fdmy, f:R? — [-1,1] measurable}.
Rd Rd

If 1, ™2 have densities p1, p2 then

dry(mi, m) = /]Rd |p1(x) — pg(x)|dx.
o Objective: give bounds for

drv(XF, XY) ast— 0.
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o Weak error asymptotics in small time for Monte Carlo simulation:
Ef(XX) —Ef(XX) as t — 0, f measurable bounded.
o Short time term in Domino strategies for weak error rates [Talay-Tubaro 1990]:

IEF(XFN) — Ef(X$)| = |Ppo--- o Pyf(x) — Prf(x)|

n
<3 |Pro-0Pyo(Py— Pr)o Pr_mf(x)|,
k=1

with h=T/N, P and P transition kernels of X and X. We look for bounds for

(,5,, — Ppg(x), g: R — R, as h— 0.
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Review of the literature

o [Bally-Talay 1996]: dty for the N-step Euler scheme X<V at fixed time horizon
T >0and as N — oo:
d « woly o KT+ 1x(?)
Vx € R 5 dTV(XT:XT ) S NT4 .
However we do not know whether K(T)/T9 — 0as T — 0.
o [Gobet-Labart 2008] gives estimates for the transition densities p and p":

_ K(MT ey
d _ =N AL Clx—y|/t
vt € (0, T], Vx,y €RY, |p(t,x,y) = p(tx )l < gy e ;

but we cannot directly it for dry; taking N =1 gives

X yX = — 1 _Clx—y|?
dw(xt,xt):/ p(t, x,y)—B" (t,x,y)ldy < K(T)Tt 1/2/ e
R4 Rd t

of order t71/2 — o,

o Difficulty of dyy: If f is Lipschitz continuous then |f(x) — f(y)| < [flLip|x — ¥/,
but if f is simply bounded measurable, we cannot bound |f(x) — f(y)| in terms of
Ix =yl
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Objectives and results

More generally we consider two general SDEs starting at the same point x with close
coefficients:

X§ =xeRY, dX = by (X))dt 4+ o1 (XX)dWs, t € [0, T],
Y$ = x, dY} = ba(Y¥)dt + o2 (YX)dWs, t € [0, T].

We define C/ as the functions C* with bounded derivatives but not bounded
themselves. We say that o is (uniformly) elliptic if

3a >0, oo > aly.
Assume that o; € C2" for some r € N and b; € Eg and o; is elliptic. Then

Vt € [0, T], Vx € RY, dv(XZ, Y¥) < C(£Y/2 + Ao (x))2/ @) 4 ceclxl*11/2,

with Ao = |01 — o2|. In particular

dTV(ng)_(;() < Ctr/(2r+1) + Cec\x\ztl/Z.

As r — oo, this gives a rate "almost" t1/2,
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A first regularization result

Let Wi be the L1-Wasserstein distance with
Wi (71, m2) = sup {/ fdmy —/ fdma, f:RY = R 1-Lipschitz continuous}.
R Rd

We show that we can bound the total variation with W, provided that the laws are
"regular enough".

Let Z1, Z> be random vectors in L1(RY) with densities p; and p». Then

1/3
drv(Z1, Z2) < CoW1(Z1, Z2)%/3 (/Rd(\vzpl(g)\ + \Vzpz(g)\)ds) .

Proof: For ¢ > 0 and ¢ ~ N(0, Iy) we have

dyv(Z1, Z2) < dvv(Zh, Z + VeQ)
+drv(Z1 + Vel, 2o + VeQ)
+drv(Z2 + Ve, Z2).
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For bounded f, we have
|Ef(Z1 + Ve() — Ef (Z1)| = [Ecp(VeC) — #(0)],
oy BafZi+y) = [ e+ nm©de = [ F@p(e - y)de

The main idea is to use some kind of integration by parts so that the derivatives
w.r.t. £ are taken with p; and not f. Then ¢ is C? if p; is C2 and

V2p(y) = / FOV2pu(€E — y)de,
V2600 < anoo/ 2 (£) | dE.

Then with a Taylor expansion, for some ¢ € (0,¢):

[Ef(Z1 + V() — Ef(Z1)| = [Ep(VEC) — ¢(0)]
= WEERHtO] + (=/2)E[VZe(VEQ)(®?]| < (/2)IV2 ol EIN (0, 1)

< Celfll [ 192 (6)lde.
R4
The same way

[EF(Z2 + V) ~ EA(Z2)| < Celfl [ [V2pa(c)]ce
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On the other hand:
[Ef(Z1 + VeQ) — Ef(Z2 + VeQ)| = [E(f(Z1) — fe(22))| < Clf]LipWi(Z1, 22),

with f- is the convolution of f:

1 2
iy B+ VR = /]Rd F()e~ e~y /22) g

e—1/2

v E-Y —le—yP/(2e) 77/ —l€2/2

VEW) = Gy [, O e de = s [, fly+ Va2
= e Y2E[f(y + £0)C] < Ifllooe 2EIN(0, Ig)| < C||f[loce /2.

so that

[Ef(Zy + VEQ) — Ef(Z2 + VEQ)| < C|f|cce™ /> Wi (Z1, Z2)

= drv(Z, 2) < Ca/(|v2p1(§)| + [V2p2(€))dé + Ce™ V2 Wi (21, Z2)

and we minimize in ¢, giving the result.
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Regularity of the density of the laws of an SDE

e For the Euler scheme:

XX = x + th(x) + o (x)Ws ~ N (x 1 th(x), to(x)a(X)T) ,
¢—d/2

(27 det(a(x)o(x) 7))
Ce—cly?/t

= |V§P>'<X(Y)| < @Rz

— / “pxs(y)ldy < CE~(@h)/2 /

RrRd

P (dy) = o (—(e(x)a(x) 7)1 (v = x — tb(x))2/(21)) dy,

e/t — o (d+k)/ztd/z/ <Py
Rd

= 0o(t™*/?).
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e The transition density from (Xs = x) to (X; = y) denoted px(s, t, x, y) satisfies the
backward Kolmogorov PDE:

px(t, t,x,) =6x, t € [0, T],

1
Bspx (s t.x,y) = (ba(5,%), Vxpx(s, . x,9)) + 5T (o] (5,0 V2px (5, t.x, ¥)on(s,%)) s < ¢

If o is elliptic and if b1, 01 € C} then sub-Gaussian Aronson's bounds state that for
every mp =0,1and 0 < my +my <rr,

Ce—cly—xI2/(t—s)
(t _ s)(d+mo+m1 +m2)/2

||v>"("0+m1 vl}'/nsz(s7 t,X,y)

| <
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How to deal with unbounded drift ?

o Recent advances in PDE theory [Menozzi-Pesce-Zhang 2021] give similar
Aronson's bounds if we only have by € C/, however requires more regularity on
o1 and not very clear for high order derivatives.

@ Another method: we consider
dX = B (X})dt + o1 (XF)dW;

where E’l‘ is "cut" outside B(x, R), so bounded. Then since X} leaves B(x, R) in
small time with small probability, we have

drv (X, XY) < C(1L+ [ (x)P)t.
Using the Girsanov formula we obtain
drv(XE, M(e1)f) < Cecl /2

where M(c) is the martingale dM(o)f = o(M(o)F)dW;.
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e Classical bounds give
Wi (M(01)5, M(02)) < C(t+ Ao(x)EH2).
e Applying the regularization theorem with Z; = M(o;)} gives
drv(M(o1)f, M(02)7) < C(¢1/2 + Ao (x))?/2
so that

drv(XZ5, YX) < C(t1/2 + Aa(x))?/3 + CecxI*¢1/2,

(Assumptions:
— o is elliptic, bounded, with bounded derivatives up to order 2
— Vb is bounded )
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Improving from t1/3 to (almost) e

We improve our regularization theorem. In the proof, we wrote ¢ : y — Ef(Zy + y)
and then for f bounded and ¢ ~ N/(0, Iy):

[EF(Z1 + VECQ) — BF(Z1)] = [Ep(v/EC) — (0)]  of order &

using a Taylor expansion up to order 2.

Idea to improve: Taylor expansion of ¢ to some higher order 2r and we consider
instead the linear combination

Z WEf(Z1 +\/e/ni¢) — Ef(Z1)

where w;, n; € R are well chosen so that the Taylor expansion terms anneals up to
order 2r.
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Weighted multi-level Richardson-Romberg

e Assume that we want to estimate E[Z] for some Z (typically: Z = F(X7)) by E[Z"]
(typically: ZV = F(Xt n) the N-multi-step Euler-Maruyama scheme); assume that

E[ZN]:E[Z]—&-CT\II-FO(%), N — oo

then

2E[2] - B2 = 2612] + 5% o (5 ) ~El2l - B0 (1) =lA o (5).

thus improving the convergence rate with the estimator 2E[Z2N] — E[ZV].

o More generally, assume

r
- ci 1
E[ZN] = E[Z E — — ), No>oo
(271 []+,-:1 Nf+°(Nf)

then with the estimator .
> wiE[Z2 ]
i=0

for some well chosen w; € R, we can obtain a convergence rate in o(N~").
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drv(Z1, 2) = s |EF(Zy) — Ef(Z2)|
flloo <1

< sup [Ef(Z) = D wiEf(Zy + V27 (-DeQ)|
i=1

Iflloc<1

+ | Z wiEF(Zy + V2= (=Ne¢) — Z wiEF(Zy + V2= (=1g()|

+\ZW,JEf(22+\/2 (i-1)e¢) — EF(Zs)]
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For bounded f and ¢ ~ N(0, Iy):
1> WEF(Zi + V2I-1e0) — EF(Z1)] = | Y wip(V27~1eC) — ¢(0))
i=1 i=1

with
Vi) = T [ e+ pa(©)de = V* [ f©pi(e - y)de
= (-1 [ FOF*pr( ~ )de < Clfll [ IT*pa(©)]dk

By Taylor expansion up to order 2r, and setting > ;_; w; = 1:

(Z wiEF(Zy + \/'71)54)> Ef(Zy) = i wi (E¢(\/2—(i—1)gg) _ @(0))

2r—1 i—1

) . -1y -
B Z <Z v Z(O)(T(’_l)e)”zE[C@k] " %E {Vz’w(\/ng) : C®2']>

(ZZ } T OB PHH L 2w )+ (Sl w E i LB (R 5] )

where {; € (0,¢) (from Taylor-Lagrange).
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We now choose (w;) as the unique solution to the r X r Vandermonde system

r .
Zw,z—(’—l)k:{ (1) e'l‘;ek_o’ . k=0,1,...,r—1,
giving

Zlef (Z1+ V21 ~Ef(Z1) = ),Zw, (VB o(VEG) - (¥

< il ([ 197 pr(€)1de ) BINCO. 1) 1e 'S w1

i=1
< Clffloe (/ |v2'p1(s>|ds) ;

Likewise

S wiEA(Ze + VETR) ~BA(Z2) < s ([ 9% pa(€)le)

i=1
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On the other hand

EF(Z1 + V2= (—De() — Z WEF(Zs + V2 1)54)’

< Z wilfy -0 JLipWi(Z1, Z2) < Cl[fllooe™ P Wi(Z1, Z2) Y [wif 20172
i=1 i=1
< Cllfllecs™*W1(21, Z2).

At the end:
drv(Z, Z2) < C ( JGECCE \vzfpz(smds) oWz, 72)

and we optimize in ¢, giving

1/(2r+1)
anv(2,22) < CoWu(20, 2/ ([ (97 pa(@)] + 197 pa() )
R
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Application to our problem

e The sub-Gaussian bounds from PDE theory :

k Cefc|y\2/t 2r 2r —r
Ve W) < Sy = [ (9 m(©)]+ [V ma(O))de = O(t ")

e Recall:
Wi (M(01)5, M(02)) < C(t + Ao(x)t2/2).

= drv(XZ, V) S C(/2 4 Bo(x))r/@rD) 4 Ceelxl® /2

(Assumptions:
— o is elliptic, bounded, with bounded derivatives up to order 2r
— Vb is bounded)
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Conclusion:

o With a good linear combination, we can improve the convergence rate from t1/3
to t//(2r+1) r N,

o We believe that such weighted multi-level methods could be applied to other
problems, to improve the convergence rate.

@ The general bound we obtained on dyy(Z1, Z2) could be applied to other
problems to give bounds on the weak error knowing bounds on the strong error.
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Thank you for your attention!
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