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Introduction

We consider the following SDE in Rd along its one-step Euler-Maruyama scheme:

SDE and Euler scheme

X x
0 = x ∈ Rd , dX x

t = b1(X
x
t )dt + σ1(X

x
t )dWt ,

X̄ x
t = x + tb1(x) + σ1(x)Wt .

We consider the total variation distance on P(Rd ) as

Total variation distance

dTV(π1, π2) = sup

{∫
Rd

fdπ1 −
∫
Rd

fdπ1, f : Rd → [−1, 1] measurable

}
.

If π1, π2 have densities p1, p2 then

dTV(π1, π2) =

∫
Rd

∣∣p1(x)− p2(x)
∣∣dx .

Objective: give bounds for

dTV(X
x
t , X̄

x
t ) as t → 0.
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Motivations

Weak error asymptotics in small time for Monte Carlo simulation:

Ef (X̄ x
t )− Ef (X x

t ) as t → 0, f measurable bounded.

Short time term in Domino strategies for weak error rates [Talay-Tubaro 1990]:

|Ef (X̄ x,N
T )− Ef (X x

T )| = |P̄h ◦ · · · ◦ P̄hf (x)− PT f (x)|

≤
n∑

k=1

∣∣P̄h ◦ · · · ◦ P̄h ◦ (P̄h − Ph) ◦ PT−khf (x)
∣∣ ,

with h = T/N, P and P̄ transition kernels of X and X̄ . We look for bounds for

(P̄h − Ph)g(x), g : Rd → R, as h → 0.
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Review of the literature

[Bally-Talay 1996]: dTV for the N-step Euler scheme X̄ x,N at �xed time horizon
T > 0 and as N → ∞:

∀x ∈ Rd , dTV(X
x
T , X̄

x,N
T ) ≤

K(T )(1+ |x |Q)
NT q

.

However we do not know whether K(T )/T q → 0 as T → 0.

[Gobet-Labart 2008] gives estimates for the transition densities p and p̄N :

∀t ∈ (0,T ], ∀x , y ∈ Rd , |p(t, x , y)− p̄N(t, x , y)| ≤
K(T )T

Nt(d+1)/2
e−C |x−y|2/t ,

but we cannot directly it for dTV; taking N = 1 gives

dTV(X
x
t , X̄

x
t ) =

∫
Rd

|p(t, x , y)−p̄N(t, x , y)|dy ≤ K(T )Tt−1/2

∫
Rd

1

td/2
e−C |x−y|2/t

of order t−1/2 → ∞.

Di�culty of dTV: If f is Lipschitz continuous then |f (x)− f (y)| ≤ [f ]Lip|x − y |,
but if f is simply bounded measurable, we cannot bound |f (x)− f (y)| in terms of
|x − y |.
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Objectives and results

More generally we consider two general SDEs starting at the same point x with close
coe�cients:

X x
0 = x ∈ Rd , dX x

t = b1(X
x
t )dt + σ1(X

x
t )dWt , t ∈ [0,T ],

Y x
0 = x , dY x

t = b2(Y
x
t )dt + σ2(Y

x
t )dWt , t ∈ [0,T ].

We de�ne C̃ k
b as the functions Ck with bounded derivatives but not bounded

themselves. We say that σ is (uniformly) elliptic if

∃α > 0, σσ⊤ ≥ αId .

Theorem

Assume that σi ∈ C2rb for some r ∈ N and bi ∈ C̃1
b and σi is elliptic. Then

∀t ∈ [0,T ], ∀x ∈ Rd , dTV(X
x
t ,Y

x
t ) ≤ C(t1/2 +∆σ(x))2r/(2r+1) + Cec|x|

2
t1/2,

with ∆σ = |σ1 − σ2|. In particular

dTV(X
x
t , X̄

x
t ) ≤ Ctr/(2r+1) + Cec|x|

2
t1/2.

As r → ∞, this gives a rate "almost" t1/2.
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A �rst regularization result

Let W1 be the L1-Wasserstein distance with

W1(π1, π2) = sup

{∫
Rd

fdπ1 −
∫
Rd

fdπ2, f : Rd → R 1-Lipschitz continuous

}
.

We show that we can bound the total variation with W1, provided that the laws are
"regular enough".

Theorem

Let Z1, Z2 be random vectors in L1(Rd ) with densities p1 and p2. Then

dTV(Z1,Z2) ≤ CdW1(Z1,Z2)
2/3

(∫
Rd

(|∇2p1(ξ)|+ |∇2p2(ξ)|)dξ
)1/3

.

Proof: For ε > 0 and ζ ∼ N (0, Id ) we have

dTV(Z1,Z2) ≤ dTV(Z1,Z1 +
√
εζ)

+ dTV(Z1 +
√
εζ,Z2 +

√
εζ)

+ dTV(Z2 +
√
εζ,Z2).
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For bounded f , we have

|Ef (Z1 +
√
εζ)− Ef (Z1)| = |Eζφ(

√
εζ)− φ(0)|,

φ : y 7→ EZ1 f (Z1 + y) =

∫
Rd

f (ξ + y)p1(ξ)dξ =

∫
Rd

f (ξ)p1(ξ − y)dξ.

The main idea is to use some kind of integration by parts so that the derivatives
w.r.t. ξ are taken with p1 and not f . Then φ is C2 if p1 is C2 and

∇2φ(y) =

∫
Rd

f (ξ)∇2p1(ξ − y)dξ,

∥∇2φ∥∞ ≤ ∥f ∥∞
∫
Rd

|∇2p1(ξ)|dξ.

Then with a Taylor expansion, for some ζ̃ ∈ (0, ζ):

|Ef (Z1 +
√
εζ)− Ef (Z1)| = |Eφ(

√
εζ)− φ(0)|

= |((((((√
εE[∇φ(0)ζ] + (ε/2)E[∇2φ(

√
εζ̃)ζ⊗2]| ≤ (ε/2)∥∇2φ∥∞E|N (0, Id )|2

≤ Cε∥f ∥∞
∫
Rd

|∇2p1(ξ)|dξ.

The same way

|Ef (Z2 +
√
εζ)− Ef (Z2)| ≤ Cε∥f ∥∞

∫
Rd

|∇2p2(ξ)|dξ.
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On the other hand:

|Ef (Z1 +
√
εζ)− Ef (Z2 +

√
εζ)| = |E(fε(Z1)− fε(Z2))| ≤ C [fε]LipW1(Z1,Z2),

with fε is the convolution of f :

fε : y 7→ Ef (y +
√
εζ) =

1

(2πε)d/2

∫
Rd

f (ξ)e−|ξ−y|2/(2ε)dξ

∇fε(y) =
1

(2πε)d/2

∫
Rd

f (ξ)
ξ − y

ε
e−|ξ−y|2/(2ε)dξ =

ε−1/2

(2π)d/2

∫
Rd

f (y +
√
εξ)ξe−|ξ|2/2dξ

= ε−1/2E[f (y + εζ)ζ] ≤ ∥f ∥∞ε−1/2E|N (0, Id )| ≤ C∥f ∥∞ε−1/2.

so that

|Ef (Z1 +
√
εζ)− Ef (Z2 +

√
εζ)| ≤ C∥f ∥∞ε−1/2W1(Z1,Z2)

=⇒ dTV(Z1,Z2) ≤ Cε

∫
(|∇2p1(ξ)|+ |∇2p2(ξ)|)dξ + Cε−1/2W1(Z1,Z2)

and we minimize in ε, giving the result.
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Regularity of the density of the laws of an SDE

• For the Euler scheme:

X̄ x
t = x + tb(x) + σ(x)Wt ∼ N

(
x + tb(x), tσ(x)σ(x)⊤

)
,

pX̄ x
t
(dy) =

t−d/2

(2π det(σ(x)σ(x)⊤))d/2
exp

(
−(σ(x)σ(x)⊤)−1 · (y − x − tb(x))⊗2/(2t)

)
dy ,

=⇒ |∇k
ypX̄ x

t
(y)| ≤

Ce−c|y|2/t

t(d+k)/2
,

=⇒
∫
Rd

|∇kpX̄ x
t
(y)|dy ≤ Ct−(d+k)/2

∫
Rd

e−c|y|2/t = Ct−(d+k)/2td/2
∫
Rd

e−c|y|2dy

= O(t−k/2).
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• The transition density from (Xs = x) to (Xt = y) denoted pX (s, t, x , y) satis�es the
backward Kolmogorov PDE:

pX (t, t, x , ·) = δx , t ∈ [0,T ],

∂spX (s, t, x , y) = ⟨b1(s, x),∇xpX (s, t, x , y)⟩+
1

2
Tr
(
σ⊤
1 (s, x)∇2

xpX (s, t, x , y)σ1(s, x)
)
, s < t ∈ [0,T ].

If σ is elliptic and if b1, σ1 ∈ Cr
b then sub-Gaussian Aronson's bounds state that for

every m0 = 0, 1 and 0 ≤ m1 +m2 ≤ r ,

∥∇m0+m1
x ∇m2

y pX (s, t, x , y)∥ ≤
Ce−c|y−x|2/(t−s)

(t − s)(d+m0+m1+m2)/2
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How to deal with unbounded drift ?

Recent advances in PDE theory [Menozzi-Pesce-Zhang 2021] give similar

Aronson's bounds if we only have b1 ∈ C̃ r
b , however requires more regularity on

σ1 and not very clear for high order derivatives.

Another method: we consider

dX̃ x
t = b̃x1(X̃

x
t )dt + σ1(X̃

x
t )dWt

where b̃x1 is "cut" outside B(x ,R), so bounded. Then since X x
t leaves B(x ,R) in

small time with small probability, we have

dTV(X
x
t , X̃

x
t ) ≤ C(1+ |b1(x)|2)t.

Using the Girsanov formula we obtain

dTV(X̃
x
t ,M(σ1)

x
t ) ≤ Cec|x|

2
t1/2

where M(σ) is the martingale dM(σ)xt = σ(M(σ)xt )dWt .
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• Classical bounds give

W1(M(σ1)
x
t ,M(σ2)

x
t ) ≤ C(t +∆σ(x)t1/2).

• Applying the regularization theorem with Zi = M(σi )
x
t gives

dTV(M(σ1)
x
t ,M(σ2)

x
t ) ≤ C(t1/2 +∆σ(x))2/3

so that

dTV(X
x
t ,Y

x
t ) ≤ C(t1/2 +∆σ(x))2/3 + Cec|x|

2
t1/2.

(Assumptions:
� σ is elliptic, bounded, with bounded derivatives up to order 2
� ∇b is bounded )
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Improving from t1/3 to (almost) t1/2...

We improve our regularization theorem. In the proof, we wrote φ : y 7→ Ef (Z1 + y)
and then for f bounded and ζ ∼ N (0, Id ):

|Ef (Z1 +
√
εζ)− Ef (Z1)| = |Eφ(

√
εζ)− φ(0)| of order ε

using a Taylor expansion up to order 2.

Idea to improve: Taylor expansion of φ to some higher order 2r and we consider
instead the linear combination∣∣∣∣∣

r∑
i=1

wiEf (Z1 +
√

ε/niζ)− Ef (Z1)

∣∣∣∣∣
where wi , ni ∈ R are well chosen so that the Taylor expansion terms anneals up to
order 2r .
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Weighted multi-level Richardson-Romberg

• Assume that we want to estimate E[Z ] for some Z (typically: Z = F (XT )) by E[Z̄N ]
(typically: Z̄N = F (X̄T ,N) the N-multi-step Euler-Maruyama scheme); assume that

E[Z̄N ] = E[Z ] +
c1

N
+ o

(
1

N

)
, N → ∞

then

2E[Z̄2N ]−E[Z̄N ] = 2E[Z ] +
2c1

2N
+ o

(
1

N

)
−E[Z ]−

c1

N
+ o

(
1

N

)
= E[Z ] + o

(
1

N

)
,

thus improving the convergence rate with the estimator 2E[Z̄2N ]− E[Z̄N ].

• More generally, assume

E[Z̄N ] = E[Z ] +
r∑

i=1

ci

N i
+ o

(
1

Nr

)
, N → ∞

then with the estimator
r∑

i=0

wiE[Z2iN ]

for some well chosen wi ∈ R, we can obtain a convergence rate in o(N−r ).
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dTV(Z1,Z2) = sup
∥f ∥∞≤1

|Ef (Z1)− Ef (Z2)|

≤ sup
∥f ∥∞≤1

|Ef (Z1)−
r∑

i=1

wiEf (Z1 +
√
2−(i−1)εζ)|

+ |
r∑

i=1

wiEf (Z1 +
√
2−(i−1)εζ)−

r∑
i=1

wiEf (Z2 +
√
2−(i−1)εζ)|

+ |
r∑

i=1

wiEf (Z2 +
√
2−(i−1)εζ)− Ef (Z2)|
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For bounded f and ζ ∼ N (0, Id ):

|
r∑

i=1

wiEf (Z1 +
√
2i−1εζ)− Ef (Z1)| = |

r∑
i=1

wiEφ(
√
2i−1εζ)− φ(0)|

with

∇kφ(y) = ∇k
∫

f (ξ + y)p1(ξ)dξ = ∇k
∫

f (ξ)p1(ξ − y)dξ

= (−1)k
∫

f (ξ)∇kp1(ξ − y)dξ ≤ C∥f ∥∞
∫

|∇kp1(ξ)|dξ.

By Taylor expansion up to order 2r , and setting
∑r

i=1 wi = 1:(
r∑

i=1

wiEf (Z1 +
√
2−(i−1)εζ)

)
− Ef (Z1) =

r∑
i=1

wi

(
Eφ(

√
2−(i−1)εζ)− φ(0)

)

=
r∑

i=1

wi

(
2r−1∑
k=1

∇kφ(0)

k!
(2−(i−1)ε)k/2E[ζ⊗k ] +

(2−(i−1)ε)r

(2r)!
E
[
∇2rφ(

√
εζ̃i ) · ζ⊗2r

])

=

(∑r−1
k=1

∇2kφ(0)
(2k)!

E[|N (0,Id )|2k ]εk
∑r

i=1 2−k(i−1)wi

)
+

(∑r
i=1 wi

(2−(i−1)ε)r

(2r)!
E[∇2rφ(

√
εζ̃i )·ζ⊗2r ]

)

where ζ̃i ∈ (0, ξ) (from Taylor-Lagrange).
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We now choose (wi ) as the unique solution to the r × r Vandermonde system

r∑
i=1

wi2
−(i−1)k =

{
1 if k = 0,
0 else.

, k = 0, 1, . . . , r − 1,

giving

r∑
i=1

wiEf (Z1 +
√
2i−1εζ)− Ef (Z1) =

εr

(2r)!

r∑
i=1

wi2
−(i−1)rE[∇2rφ(

√
εζ̃i ) · ζ⊗2r ]

≤ C∥f ∥∞
(∫

|∇2rp1(ξ)|dξ
)
E[|N (0, Id )|2r ]εr

r∑
i=1

wi2
−(i−1)r

≤ C∥f ∥∞
(∫

|∇2rp1(ξ)|dξ
)
εr .

Likewise

r∑
i=1

wiEf (Z2 +
√
2i−1εζ)− Ef (Z2) ≤ C∥f ∥∞

(∫
|∇2rp2(ξ)|dξ

)
εr .
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On the other hand∣∣∣∣∣
r∑

i=1

wiEf (Z1 +
√
2−(i−1)εζ)−

r∑
i=1

wiEf (Z2 +
√
2−(i−1)εζ)

∣∣∣∣∣
≤

r∑
i=1

wi [f2−(i−1)ε]LipW1(Z1,Z2) ≤ C∥f ∥∞ε−1/2W1(Z1,Z2)
r∑

i=1

|wi |2(i−1)/2

≤ C∥f ∥∞ε−1/2W1(Z1,Z2).

At the end:

dTV(Z1,Z2) ≤ C

(∫
(|∇2rp1(ξ)|+ |∇2rp2(ξ)|)dξ

)
εr + Cε−1/2W1(Z1,Z2)

and we optimize in ε, giving

dTV(Z1,Z2) ≤ CdW1(Z1,Z2)
2r/(2r+1)

(∫
Rd

(|∇2rp1(ξ)|+ |∇2rp2(ξ)|)dξ
)1/(2r+1)

.
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Application to our problem

• The sub-Gaussian bounds from PDE theory :

|∇k
ypM(σ1)

x
t
(y)| ≤

Ce−c|y|2/t

t(d+k)/2
=⇒

∫
(|∇2rp1(ξ)|+ |∇2rp2(ξ)|)dξ = O(t−r )

• Recall:
W1(M(σ1)

x
t ,M(σ2)

x
t ) ≤ C(t +∆σ(x)t1/2).

=⇒ dTV(X
x
t ,Y

x
t ) ≤ C(t1/2 +∆σ(x))2r/(2r+1) + Cec|x|

2
t1/2

(Assumptions:
� σ is elliptic, bounded, with bounded derivatives up to order 2r
� ∇b is bounded)
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Conclusion:

With a good linear combination, we can improve the convergence rate from t1/3

to tr/(2r+1), r ∈ N.
We believe that such weighted multi-level methods could be applied to other
problems, to improve the convergence rate.

The general bound we obtained on dTV(Z1,Z2) could be applied to other
problems to give bounds on the weak error knowing bounds on the strong error.

Pierre BRAS Total variation distance between two di�usions in small time with unbounded drift: application to the Euler-Maruyama scheme



Thank you for your attention!
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