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Introduction: Langevin Gradient Descent

Consider a training problem with parameter θ and data D and learning rate γ:

Gradient Descent versus Langevin Gradient Descent

(Stochastic) Gradient: gn+1 = ∇θV (θn;Dn+1)

(Stochastic) Gradient Descent: θn+1 = θn − γn+1gn+1,

Langevin (Stochastic) Gradient Descent: θn+1 = θn − γn+1gn+1+σ
√
γn+1N (0, Id ),

Introduced in a Bayesian setting Welling and Teh (2011)

The small white noise adds learning regularization

Allows to escape from traps for the gradient descent: local minima, saddle points

Adding noise is known to improve the learning in some cases Neelakantan et al.
(2015); Anirudh Bhardwaj (2019); Gulcehre et al. (2016)
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Preconditioned Langevin Gradient Descent

Preconditioned Langevin Gradient Descent Li et al. (2016)

For some preconditioner rule Pn+1 depending on the previous updates of the gradient:

Preconditioned Gradient Descent: θn+1 = θn − γn+1Pn+1 · gn+1,
Preconditioned Langevin: θn+1 = θn − γn+1Pn+1 · gn+1+σ

√
γn+1N (0,Pn+1)

Per-dimension adaptive step size

Typical examples: Adam, RMSprop, Adadelta...

Li et al. (2016); Ma et al. (2015); Patterson and Teh (2013); Simsekli et al.
(2016) compares the bene�ts of noisy and/or preconditioned optimizers
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Training very deep Neural Networks

Very deep neural networks are crucial, in particular in image classi�cation He
et al. (2016)

However much more di�cult to train: much more "non-linear", local traps,
vanishing gradients

Neelakantan et al. (2015): hints that noisy optimizers bring more improvements
in this very deep setting

Figure: Architecture of the VGG-16 network for an input image of size 224× 224.
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Objectives

Side-by-side comparison of preconditioned Langevin versus their respective
non-Langevin counterparts: Adam vs L-Adam, RMSprop vs L-RMSprop etc

We progressively increase the depth of the network

Based on this heuristic, we introduce the Layer Langevin algorithm: Add noise
only to some layers of the network

Test Langevin and Layer Langevin algorithms on deep image analysis architectures
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Plain and convolutional Neural Networks

We compare Preconditioned Langevin optimizers with their non-Langevin counterparts
while increasing the depth of the network on:

Fully connected (Dense) neural networks

Convolutional layers followed by dense layers,

on the MNIST, CIFAR-10 and CIFAR-100 datasets.

Figure: MNIST image dataset Figure: CIFAR-10 image dataset
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Results for dense (fully connected) networks
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Figure: Training of neural networks of various depths on the MNIST dataset using Langevin
algorithms compared with their non-langevin counterparts. (a): 3 hidden layers, (b): 20 hidden
layers, (c): 30 hidden layers, (d): 40 hidden layers.
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Results for convolutional layers
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Figure: Training of convolutional neural networks on the CIFAR-10 dataset. (a): 10 hidden
dense layers, (b): 30 hidden layers.

=⇒ The deeper the network is, the greater are the gain provided by Langevin
optimizers.
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Highway networks

To deal with very deep networks, highway networks Srivastava et al. (2015) introduce
parametrized residual connection:

y = TθT (x) · DθD (x) + (1− TθT (x)) · x ,

where T and D are dense or convolutional layers.
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Figure: Training of a highway neural network with 80 highway hidden layers on the CIFAR-10
dataset.

=⇒ The previous conclusion is still true but only from a larger depth.
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Layer Langevin Algorithm

Idea: The deepest layers of the network bear the most non-linearities =⇒ are more
subject to Langevin optimization

Layer Langevin Algorithm

θ
(i)
n+1 = θ

(i)
n − γn+1[Pn+1 · gn+1](i) + 1i∈J σ

√
γn+1

[
N (0,Pn+1)

](i)
, (1)

where J : subset of weight indices; Pn: preconditioner.

We choose J to be the �rst k layers.
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An example of Layer Langevin optimization
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Figure: Layer Langevin method comparison on a dense neural network with 30 hidden layers on the
MNIST dataset.
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Application to deep architectures for image classi�cation

Typical architecture in image recognition: Succession of convolutional layers with
non-linearities (ReLU); the dimensions (width and height) of the image are
progressively reduced while the number of channels is progressively augmented
Simonyan and Zisserman (2015).

Depth is crucial.

Residual connections: each layer behaves in part like the identity layer to pass the
information through the successive layers He et al. (2016); Huang et al. (2017).

Figure: ResNet elementary block
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Layer Langevin for training of ResNet-20
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Figure: Layer Langevin method comparison for the training of ResNet-20.Pierre BRAS Langevin Algorithms for Deep Neural Networks



Table: Final test accuracy values obtained for ResNet

Adam LL-Adam RMSprop LL-RMSprop Adadelta LL-Adadelta
CIFAR-10 76.95 % 77.39 % 84.29 % 85.14 % 75.23 % 75.74 %
CIFAR-100 45.33 % 45.41 % 55.15 % 55.68 % 42.28 % 43.84 %

Table: Final test accuracy values on the CIFAR-10 dataset with DenseNet architecture.

Adam LL-Adam RMSprop LL-RMSprop Adadelta LL-Adadelta
CIFAR-10 87.81 % 88.16 % 57.59 % 57.56 % 71.64 % 72.72 %
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Thank you for your attention !
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