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Optimization problem

Let V : Rd → R,
Objective: Minimize

x∈Rd
V (x).

Examples:
1 Determining optimal allocation of resources to minimize production output while

minimizing costs.
2 Maximize the gains along a controlled time process with respect to the strategy.
3 Minimize the error of a model to the true data for prediction and regression tasks.
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Example: Regression and Neural Networks
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• Data (ui , vi ) ∈ Rdin × Rdout (inputs
and outputs) for 1 ≤ i ≤ N with N � 1.

• We want to find some formula
relation between the inputs and the outputs:

Find Φ : Rdin → Rdout

such that: ∀i , Φ(ui ) ≈ vi .

• We parametrize Φ with a finite
number of parameters: {Φx : x ∈ Rd}.
For example, affine parametrization:

Φx1,x2 (u) = x1·u+x2, x1 matrix, x2 vector.

• Objective as an optimization problem: minimize the MSE:

min
x∈Rd

1
N

N∑
i=1

|Φx (ui )− vi |2 =: min
x∈Rd

V (x).
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Example: Regression and Neural Networks

• Neural Networks are families
of parametrized functions that can approximate many
functions in practice (Cybenko, 1989), (AlexNet 2012).

• Written
as composition of linear and non-linear functions:

Input: h0 = u,

hk = φ(αk · hk−1 + βk) ∈ Rdk , 1 ≤ k ≤ K − 1,
Output: hK = αK · hK−1 + βK =: Φ(αk ,βk )0≤k≤K (u)

where
φ is a non-linear function applied coordinate-wise,
(dk) is a sequence of dimensions,
(αk)k are matrices and
(βk)k are vectors parametrizing the neural network.
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Example: Computation of quantiles and VaR
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For Z some random
variable, the quantile of order α ∈ [0, 1] is

qα := inf{u ∈ R : P(Z ≤ u) ≥ α}.

In finance, qα is called Value at Risk and is
widely used for risk management (Jorion, 1996).

Following (Uryasev and
Rockafellar, 2001) we have the characterization:

qα = argmin
x∈R

E
[

x +
1

1 − α
(Z − x)+

]
,

where (·)+ denotes the positive part.
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Example: Stochastic control

Dynamical stochastic system Yt depending on some control ut with Brownian
motion Wt :

dY u
t = b(Y u

t , ut)dt + σ(Y u
t , ut)dWt , t ∈ [0,T ].

We choose the control to achieve

min
u

J(u) := E
[∫ T

0
G(t,Y u

t )dt + F (Y u
T )

]
where G and F are some scalar functions.
We can parametrize u by some neural network with parameter x :

ut = ux (t,Yt)

and obtain an optimization problem on x with V (x) = J(ux ).
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Gradient Descent Algorithm (GD)

Gradient descent algorithm: Assuming that V ∈ C1, for each iteration compute the
gradient and "go down" the gradient with non-increasing positive step sequence (γk):

Gradient Descent Algorithm

With initialization x0 ∈ Rd and step sequence (γk):

xn+1 = xn − γn+1∇V (xn).

x0 x⋆

V

=⇒ Greedy algorithm: focus on local improvements around the current position at
each iteration.

Pierre BRAS Adaptive Gradient Langevin Algorithms 11 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Gradient Descent Algorithm (GD)

Gradient descent algorithm: Assuming that V ∈ C1, for each iteration compute the
gradient and "go down" the gradient with non-increasing positive step sequence (γk):

Gradient Descent Algorithm

With initialization x0 ∈ Rd and step sequence (γk):

xn+1 = xn − γn+1∇V (xn).

x0 x⋆

V

=⇒ Greedy algorithm: focus on local improvements around the current position at
each iteration.

Pierre BRAS Adaptive Gradient Langevin Algorithms 11 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Example of Gradient Descent

Figure: Example of different variants of gradient descent algorithms with
V (x , y) = − sin(x2) cos(3y2)e−x2y2

− e−(x+y)2 .
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Stochastic Gradient Descent (SGD)

In many practical cases, it is not possible to compute the true gradient ∇V (xn) at
each iteration:

1 In big data applications with amount of data N � 1:

V (x) =
N∑

i=1
Vi (x).

2 In applications with some continuous random variable Z :

V (x) = EZ [v(x ,Z)]

with no close form expression of the expectation.
3 Remark: in the 1st case we can also write:

V (x) = EZ [v(x ,Z)], Z ∈ {1, . . . ,N}, v(x ,Z) = VZ (x).

Pierre BRAS Adaptive Gradient Langevin Algorithms 13 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Stochastic Gradient Descent (SGD)

In many practical cases, it is not possible to compute the true gradient ∇V (xn) at
each iteration:

1 In big data applications with amount of data N � 1:

V (x) =
N∑

i=1
Vi (x).

2 In applications with some continuous random variable Z :

V (x) = EZ [v(x ,Z)]

with no close form expression of the expectation.
3 Remark: in the 1st case we can also write:

V (x) = EZ [v(x ,Z)], Z ∈ {1, . . . ,N}, v(x ,Z) = VZ (x).

Pierre BRAS Adaptive Gradient Langevin Algorithms 13 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Stochastic Gradient Descent (SGD)

In many practical cases, it is not possible to compute the true gradient ∇V (xn) at
each iteration:

1 In big data applications with amount of data N � 1:

V (x) =
N∑

i=1
Vi (x).

2 In applications with some continuous random variable Z :

V (x) = EZ [v(x ,Z)]

with no close form expression of the expectation.

3 Remark: in the 1st case we can also write:

V (x) = EZ [v(x ,Z)], Z ∈ {1, . . . ,N}, v(x ,Z) = VZ (x).

Pierre BRAS Adaptive Gradient Langevin Algorithms 13 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Stochastic Gradient Descent (SGD)

In many practical cases, it is not possible to compute the true gradient ∇V (xn) at
each iteration:

1 In big data applications with amount of data N � 1:

V (x) =
N∑

i=1
Vi (x).

2 In applications with some continuous random variable Z :

V (x) = EZ [v(x ,Z)]

with no close form expression of the expectation.
3 Remark: in the 1st case we can also write:

V (x) = EZ [v(x ,Z)], Z ∈ {1, . . . ,N}, v(x ,Z) = VZ (x).

Pierre BRAS Adaptive Gradient Langevin Algorithms 13 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

=⇒ In both cases we write

V (x) = EZ [v(x ,Z)].

Stochastic Gradient Descent Algorithm

With initialization x0 ∈ Rd and step sequence (γk):

xn+1 = xn − γn+1∇v(x ,Zn+1),

Zn ∼ Z i.i.d..

Stochastic Gradient Descent Algorithm, Mini-Batch version

With initialization x0 ∈ Rd and step sequence (γk):

xn+1 = xn − γn+1
1
M

M∑
i=1

∇v(xn,Z i
n+1),

Z i
n ∼ Z i.i.d.

Introduced in (Robbins and Monro, 1951); Robbins-Siegmund Lemma of convergence
(Robbins and Siegmund, 1971).
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Problem: traps for gradient descent

The gradient descent xn can be trapped in a local (but not global) minimum (e.g. if
V is not convex):

x0 x⋆

V

x0 x⋆

V
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Langevin Equation

• We add a white noise to xn, hoping to escape traps and explore:

Stochastic Gradient Langevin Dynamics (SGLD), (Welling and Teh, 2011)

xn+1 = xn − γn+1∇Ṽ (xn) +
√
γn+1σξn+1,

ξn+1 ∼ N (0, Id ), σ > 0.

The noise is exogenous and scales as √
γn+1.

• The continuous version becomes:

Langevin equation

dXs = −∇V (Xs)ds +σdWs

where (Ws) is a Brownian motion.

• Its invariant measure is the Gibbs measure

νσ(x)dx ∝ e−2V (x)/σ2
dx .

• For small σ, νσ is concentrated around argmin(V ):
Solve the Langevin equation =⇒ approximation of νσ =⇒ approximation of
argmin(V ).
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Bayesian inference and sampling from distribution
Stochastic algorithms are also used for sampling from a probability measure.

Given data u1, . . . , uN with N � 1, we consider a family of probability
distributions {p(u|x)du : x ∈ Rd} and a prior densities p0(x)dx . Then the
posterior distribution on x , p(x |u1, . . . , uN), has density proportional to

p0(x)p(u1|x) . . . p(uN |x) =: e−V (x),

V (x) := − log(p0(x))− log(p(u1|x))− · · · − log(p(uN |x)),

which is invariant measure of dXs = −∇V (x)ds +
√

2dWs (Welling and Teh,
2011).

(Lamberton and Pagès, 2002, 2003; Lemaire, 2005; Pagès and Panloup, 2023)
introduce and analyze sampling from a probability measure ν as invariant measure
of dXt = b(Xt)dt + σ(Xt)dWt :

X̄n+1 = X̄n + γn+1b(X̄n) +
√
γn+1σ(X̄n)Un+1, Un ∼ N (0, Id ) i.i.d.,

νn :=
1
Γn

n∑
k=1

γkδX̄k
, Γn = γ1 + . . .+ γn.

(Durmus and Moulines, 2017, 2019; Brosse et al., 2019) focus on the Langevin
equation.
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Bayesian inference and sampling from distribution
Stochastic algorithms are also used for sampling from a probability measure.

Given data u1, . . . , uN with N � 1, we consider a family of probability
distributions {p(u|x)du : x ∈ Rd} and a prior densities p0(x)dx . Then the
posterior distribution on x , p(x |u1, . . . , uN), has density proportional to

p0(x)p(u1|x) . . . p(uN |x) =: e−V (x),

V (x) := − log(p0(x))− log(p(u1|x))− · · · − log(p(uN |x)),

which is invariant measure of dXs = −∇V (x)ds +
√

2dWs (Welling and Teh,
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Langevin Simulated Annealing

• Another possibility : make σ → 0 while iterating the algorithm:

xn+1 = xn − γn+1∇V (xn) + a(γ1 + · · ·+ γn+1)σ
√
γn+1ξn+1, ξn+1 ∼ N (0, Id ),

where a(t) is decreasing and a(t) −→
t→∞

0.
The continuous version becomes :

Langevin-Simulated Annealing Equation

dXt = −∇V (Xt)dt + a(t)σdWt ,

The ’instantaneous’ invariant measure νa(t)σ(dx) ∝ exp
(
−2V (x)/(a2(t)σ2)

)
converges itself to argmin(V )

Schedule a(t) = A log−1/2(t) then Xt −→
t→∞

argmin(V ) in law (Chiang et al.,
1987; Miclo, 1992), (Monmarché, Fournier, and Tardif, 2021)
(Gelfand and Mitter, 1991): the convergence of the algorithm (xn) .
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Multiplicative noise and Adaptive algorithms

Noise σ > 0 =⇒ isotropic, homogeneous noise =⇒ not adapted to V .

Instead : σ(Xt) is a matrix depending on the position.
Extensively used in Machine Learning without theoretical guarantee.

dYt = −(σσ⊤∇V )(Yt)dt + a(t)σ(Yt)dWt +

a2(t)

 d∑
j=1

∂i (σσ
⊤)(Yt)ij


1≤i≤d

 dt

︸ ︷︷ ︸
correction term Υ(Yt )

a(t) = A/
√

log(t).

• Correction term so that νa(t) ∝ exp
(
−2V (x)/a2(t)

)
is still the "instantaneous"

invariant measure (Li et al., 2016; Pagès and Panloup, 2023).
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Part I: Convergence of Langevin algorithms

Convergence of the Langevin equation Yt with multiplicative noise to argmin(V )
as well as the discretized scheme Ȳt .
Weak convergence for Wasserstein-1 and Total Variation.
For D = W1 or dTV and ν⋆ being the target measure, we have

D(Yt , ν
⋆) ≤ D(Yt , νa(t)) +D(νa(t), ν

⋆)

=⇒ Investigate the rate of D(νa, ν⋆) as a → 0, including cases where ∇2V (x) is
not positive definite for some x ∈ argmin(V ).

Contributions:
1 Pierre Bras and Gilles Pagès. Convergence of Langevin-Simulated Annealing

algorithms with multiplicative noise. Mathematics of Computation, 2023, and
presented to the conference MCM23.

2 Pierre Bras and Gilles Pagès. Convergence of Langevin-Simulated Annealing
algorithms with multiplicative noise II: Total Variation. Monte Carlo Methods and
Applications, 29(3):203–219, 2023.

3 Pierre Bras. Convergence rates of Gibbs measures with degenerate minimum.
Bernoulli, 28(4):2431 – 2458, 2022.
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Part II: Adaptive Langevin algorithms for deep neural networks

Implement Langevin algorithms for different choices of σ (Adam, RMSprop,
Adadelta etc) and compare with their corresponding non-Langevin counterpart.
Investigate the benefits of Langevin algorithms on very deep learning: image
classification, deep stochastic control.
(on-going) Introduce deep pathwise variance reduction for SDEs with
reinforcement learning approaches.

Contributions:
1 Pierre Bras. Langevin algorithms for very deep Neural Networks with application

to image classification. Procedia Computer Science, 222:303 – 310, 2023, and
presented at a workshop of IJCNN23.

2 Pierre Bras and Gilles Pagès. Langevin algorithms for Markovian Neural Networks
and Deep Stochastic control. IJCNN23 Proceedings, 2023.

3 Pierre Bras and Gilles Pagès. Policy Gradient Optimal Correlation Search for
Variance Reduction in Monte Carlo simulation and Maximum Optimal Transport.
arXiv e-prints, page arXiv:2307.12703, 2023.
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Part III: Numerical Simulation of Stochastic processes

n(x1)

x1

n(x2)

x2

α

• For Part
I, we need bounds for dTV between a stochastic
process and its Euler scheme in small time. We
use a multi-level Richardson-Romberg method.

• We study weak error rates of numerical
schemes for (regular) stochastic Volterra
equations, having in mind the rough case:

Xt = X0+

∫ t

0
K1(t, s)b(Xs)ds+

∫ t

0
K2(t, s)σ(Xs)dWs .

• We study the Brownian motion in R2 which is
stopped or reflected on a wedge; we give density formulas as well as simulation
algorithms.
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Contributions:
1 Pierre Bras, Gilles Pagès, and Fabien Panloup. Total variation distance between

two diffusions in small time with unbounded drift: application to the
Euler-Maruyama scheme.. Electron. J. Probab., 27:1–19, 2022.

2 Pierre Bras and Masaaki Fukasawa. Weak error rates for numerical schemes of
non-singular Stochastic Volterra equations with application to option pricing
under path-dependent volatility. In review.

3 Pierre Bras and Arturo Kohatsu-Higa. Simulation of reflected Brownian motion
on two dimensional wedges. Stochastic Process. Appl., 156:349–378, 2023.
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Outline

2 Convergence of adaptive Langevin-Simulated Annealing algorithms
Convergence of Langevin-Simulated Annealing algorithms for W1 and dTV
Convergence rates of Gibbs measures with degenerate minimum
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Objectives and assumptions

dYt = −(σσ⊤∇V )(Yt)dt + a(t)σ(Yt)dWt +

a2(t)

 d∑
j=1

∂i (σσ
⊤)(Yt)ij


1≤i≤d

 dt

︸ ︷︷ ︸
correction term Υ(Yt )

a(t) = A/
√

log(t),

νa(t) ∝ exp
(
−2V (x)/a2(t)

)
instantaneous invariant measure, ν⋆ = lim

a→0
νa.

Prove the convergence of Yt to ν⋆ for W1 and dTV:

W1(X ,Y ) = sup
{∣∣E[f (X)]− E[f (Y )]

∣∣ : [f ]Lip = 1
}
,

dTV(X ,Y ) = sup

{∣∣E[f (X)]− E[f (Y )]
∣∣ : sup

Rd
f = 1

}
.

Important assumptions (Pagès and Panloup, 2023):
1 V is strongly convex outside some compact set, ∇V is Lipschitz.
2 σ is bounded and elliptic: σσ⊤ ≥ σ0Id , σ0 > 0.
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Domino strategy

Domino strategy: (Pagès and Panloup, 2023) for f 1-Lipschitz, P1, P2 kernels of
processes X , Y , (γn) step sequence and Γn := γ1 + · · ·+ γn, we have:

W1(YΓn ,XΓn ) ≤ |Ef (YΓn )− Ef (XΓn )|

= |P2
γ1 ◦ · · · ◦ P2

γn f (x)− P2
Γn f (x)|

=

∣∣∣∣∣
n∑

k=1
P2
γ1 ◦ · · · ◦ P2

γk−1 ◦ (P2
γk − P1

γk ) ◦ P1
Γn−Γk

f (x)

∣∣∣∣∣
≤

n∑
k=1

∣∣∣P2
γ1 ◦ · · · ◦ P2

γk−1 ◦ (P2
γk − P1

γk ) ◦ P1
Γn−Γk

f (x)
∣∣∣ ,

0 Γn

γk+1

Γk Γk+1

In the sum we bound two types of terms:
1 For large k =⇒ Error in small time =⇒ use bounds for ‖X x

t − Y x
t ‖p

2 For small k =⇒ Ergodic properties (Eberle, 2016; Wang, 2020).
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Domino strategy

Domino strategy: (Pagès and Panloup, 2023) for f 1-Lipschitz, P1, P2 kernels of
processes X , Y , (γn) step sequence and Γn := γ1 + · · ·+ γn, we have:

W1(YΓn ,XΓn ) ≤ |Ef (YΓn )− Ef (XΓn )|

= |P2
γ1 ◦ · · · ◦ P2

γn f (x)− P2
Γn f (x)|

=

∣∣∣∣∣
n∑

k=1
P2
γ1 ◦ · · · ◦ P2

γk−1 ◦ (P2
γk − P1

γk ) ◦ P1
Γn−Γk

f (x)

∣∣∣∣∣
≤

n∑
k=1

∣∣∣P2
γ1 ◦ · · · ◦ P2

γk−1 ◦ (P2
γk − P1

γk ) ◦ P1
Γn−Γk

f (x)
∣∣∣ ,

0 Γn

γk+1

Γk Γk+1
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Plan of the proof

Ellipticity parameter a(t) → 0 =⇒ we rework the dependency of the ergodic
bound in the ellipticity for a general SDE.

We then prove the convergence for the auxiliary "by plateau" process:

dXt = −σσ⊤∇V (Xt)dt + an+1σ(Xt)dWt + a2
n+1Υ(Xt)dt, t ∈ [Tn,Tn+1),

an = A log−1/2(Tn),

and obtain ergodic bounds for W1(XTn+1 , νan+1 ); then

W1(XTn , ν
⋆) ≤ W1(XTn , νan ) +W1(νan , ν

⋆) → 0.

We then use the domino strategy to give bounds on W1(XTn ,YTn ):

W1(YTn , ν
⋆) ≤ W1(YTn ,XTn ) +W1(XTn , ν

⋆) → 0.
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T1 T2 T3 T4

t

a(t) Non plateau case

Plateau case
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Convergence of the Euler scheme with decreasing steps

Euler-Maruyama scheme

Ȳ x0
Γn+1

= ȲΓn + γn+1
(

ba(Γn)(Ȳ
x0
Γn
) + ζn+1(Ȳ x0

Γn
)
)
+ a(Γn)σ(Ȳ x0

Γn
)(WΓn+1 − WΓn )

γn+1 decreasing to 0,
∑

n
γn = ∞,

∑
n

γ2
n < ∞, Γn = γ1 + · · ·+ γn,

∀x , E[ζn(x)] = 0 (mini-batch noise).

=⇒ Same strategy of proof.
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Total variation case

Proofs are similar with W1 distance.

Main difficulty: error bounds in short time. Indeed:

|f (Xt)− f (Yt)| ≤ [f ]Lip|Xt − Yt | if f is Lipschitz.
|f (Xt)− f (Yt)| ≤ ??? if f is bounded.

We investigate dTV bounds in short time for general SDEs:

For dXt = b1(Xt)dt + σ1(Xt)dWt , dYt = b2(Yt)dt + σ2(Yt)dWt ,

X0 = Y0, σ1(X0) = σ2(Y0),

then
dTV(Xt ,Yt) ≤ Ct1/2ec

√
log(1/t).
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These results uses:

Theorem
Let Z1 and Z2 be two random vectors admitting densities p1 and p2. Then

dTV(Z1,Z2) ≤ Cd,rW1(Z1,Z2)
2r/(2r+1)

(∫
Rd

(
‖∇2r p1(ξ)‖+ ‖∇2r p2(ξ)‖

)
dξ
)1/(2r+1)

.

We use a weighted multi-level Richardson-Romberg extrapolation (Giles, 2008;
Lemaire and Pagès, 2017):

• fε(x) := E[f (x + ε1/2ζ)] is Lipschitz, ζ ∼ N (0, Id ),
• Taylor expansion of y 7→ E[f (Z1 + y)],

• |Ef (Z1)− Ef (Z2)| ≤

∣∣∣∣∣Ef (Z1)−
r∑

i=1
wiEfε/ni (Z1)

∣∣∣∣∣+
∣∣∣∣∣

r∑
i=1

wiEfε/ni (Z1)−
r∑

i=1
wiEfε/ni (Z2)

∣∣∣∣∣
+

∣∣∣∣∣
r∑

i=1
wiEfε/ni (Z2)− Ef (Z2)

∣∣∣∣∣ ,
• We choose wi and ni to cancel all the terms up to i = r − 1.
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Outline

2 Convergence of adaptive Langevin-Simulated Annealing algorithms
Convergence of Langevin-Simulated Annealing algorithms for W1 and dTV
Convergence rates of Gibbs measures with degenerate minimum
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To get the convergence of Langevin algorithms, we need the convergence of

D(νa, ν
⋆), a → 0,

νa(x) ∝ exp
(
−2V (x)/a2) ,

ν⋆ = lim
a→0

νa.

It is known to be of order a if argmin(V ) is finite and ∇2V (x⋆
i ) > 0 for all

x⋆
i ∈ argmin(V ) (Hwang, 1980, 1981). Then

ν⋆ =

(∑
i

det(∇2V (x⋆
i ))

−1/2
)−1∑

i
det(∇2V (x⋆

i ))
−1/2δx⋆

i
.

We investigate the case where argmin(V ) is finite with degenerate minimum.
This happens in practice when training over-parametrized neural networks (Sagun,
Bottou, and LeCun, 2016):

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0

50

100

Figure: Distribution of the eigenvalues of the Hessian matrix at the end of training of a neural
network on the MNIST dataset.
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Considering recursively the spaces of cancellation of ∇2kV , we obtain:

Theorem

Assume that argmin(V ) = {x⋆}. Define (Fk) recursively as

F0 = Rd , Fk = {h ∈ Fk−1 : ∀h′ ∈ Fk−1, ∇2kV (x⋆) · h ⊗ h′⊗2k−1 = 0}

and Ek the orthogonal complement of Fk in Fk−1. Let B a basis adapted to
Rd = E1 ⊕ · · · ⊕ Ep and αi = 1/(2j) on the subspace Ej , then if X ∼ νa:(

1
a2α1

, . . . ,
1

a2αd

)
∗ (B−1 · (Xa2 − x⋆)) → X as a → 0, in law,

where X has a density proportional to e−g(x) with

g(x) =
2p∑

k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k
i1
2 +···+ ip

2p =1

( k
i1, . . . , ip

)
∇kV (x⋆) · pE1

(B · x)⊗i1 ⊗· · ·⊗ pEp (B · x)⊗ip .

(Extension of (Athreya and Hwang, 2010)).
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Outline

3 Adaptive Langevin algorithms for Neural Networks
Langevin versus non-Langevin for very deep learning
Langevin algorithms for Markovian Neural Networks and Deep Stochastic control
Policy Gradient Optimal Correlation Search for Variance Reduction in Monte
Carlo simulation and Maximum Optimal Transport
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Preconditioned Langevin Gradient Descent

Preconditioned Langevin Gradient Descent (Li et al., 2016)

For some preconditioner rule Pn+1 depending on the previous updates of the gradient
(gn ' ∇V (θn)) and σ > 0:

Preconditioned Gradient Descent: θn+1 = θn − γn+1Pn+1 · gn+1,

Preconditioned Langevin: θn+1 = θn − γn+1Pn+1 · gn+1+σ
√
γn+1N (0,Pn+1)

Per-dimension adaptive step size.
Adding noise is known to improve the learning in some cases. (Neelakantan et al.,
2015; Anirudh Bhardwaj, 2019; Gulcehre et al., 2016)
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Examples of gradient algorithms

Algorithm Adam (Kingma and Ba,
2015)

Parameters: β1, β2, λ > 0
Mn+1 = β1Mn + (1 − β1)gn+1
MSn+1 = β2 MSn +(1 − β2)gn+1 ⊙ gn+1
M̂n+1 = Mn+1/(1 − βn+1

1 )

M̂Sn+1 = MSn+1 /(1 − βn+1
2 )

Pn+1 = diag
(
1 ⊘

(
λ1 +

√
M̂Sn+1

))
θn+1 = θn − γn+1Pn+1 · M̂n+1.

Algorithm RMSprop (Tieleman and Hin-
ton, 2012)

Parameters: α, λ > 0
MSn+1 = αMSn +(1 − α)gn+1 ⊙ gn+1

Pn+1 = diag
(
1 ⊘

(
λ1 +

√
MSn+1

))
θn+1 = θn − γn+1Pn+1 · gn+1

Algorithm Adadelta (Zeiler, 2012)
Parameters: β1, β2, λ > 0
MSn+1 = β1 MSn +(1 − β1)gn+1 ⊙ gn+1

Pn+1 = diag
(
(λ1 + M̂Sn) ⊘

(
λ1 +

√
M̂Sn

))
θn+1 = θn − γn+1Pn+1 · gn+1.

M̂Sn+1 = β2 MSn +(1 − β2)(θn+1 − θn) ⊙ (θn+1 − θn).
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Training very deep Neural Networks

Very deep neural networks are crucial, in particular in image classification (He
et al., 2016).
However much more difficult to train: much more "non-linear", local traps,
vanishing gradients (Dauphin et al., 2014).
(Neelakantan et al., 2015): hints that noisy optimizers bring more improvements.

Figure: Architecture of the VGG-16 network for an input image of size 224 × 224.
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We compare Preconditioned Langevin optimizers with their non-Langevin counterparts
while increasing the depth of the networkon the MNIST, CIFAR-10 and CIFAR-100
datasets.

We implement the package langevin_optimizers for ready-to-use TensorFlow
optimizers using the method _resource_apply_dense from the base class
tf.keras.optimizers.Optimizer.

Figure: MNIST image dataset Figure: CIFAR-10 image dataset
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Results for dense (fully connected) networks

0.9
0.92
0.94
0.96
0.98

(a
)

Test accuracy

5 · 10−2
0.1
0.15
0.2

Train loss

0.7
0.8
0.9

(b
)

0
0.2
0.4
0.6
0.8
1

0.4
0.6
0.8

1

(c
)

0
0.5
1
1.5
2

0 5 10 15
0

0.2
0.4
0.6
0.8

1

Epochs

(d
)

0 5 10 15

1

2

Epochs

RMSprop L-RMSprop
Adam L-Adam

Figure: Training of neural networks of various depths on the MNIST dataset using Langevin
algorithms compared with their non-langevin counterparts. (a): 3 hidden layers, (b): 20 hidden
layers, (c): 30 hidden layers, (d): 40 hidden layers.
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Layer Langevin Algorithm

Idea: The deepest layers of the network bear the most non-linearities =⇒ are more
subject to Langevin optimization

Layer Langevin Algorithm

θ
(i)
n+1 = θ

(i)
n − γn+1[Pn+1 · gn+1]

(i) + 1i∈J σ
√
γn+1

[
N (0,Pn+1)

](i)
,

where J : subset of weight indices; Pn: preconditioner.

We choose J to be the first k layers.
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An example of Layer Langevin optimization
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Figure: Layer Langevin comparison on a dense neural network with 30 hidden layers on the MNIST dataset.

Pierre BRAS Adaptive Gradient Langevin Algorithms 49 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Application to deep architectures for image classification

Typical architecture in image recognition: Succession of convolutional layers with
non-linearities (ReLU) (Simonyan and Zisserman, 2015)
Residual connections: each layer behaves in part like the identity layer to pass the
information through the successive layers (He et al., 2016; Huang et al., 2017).

Figure: ResNet elementary block
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Layer Langevin for training of ResNet-20
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Figure: Layer Langevin method comparison for the training of ResNet-20.Pierre BRAS Adaptive Gradient Langevin Algorithms 51 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Outline

3 Adaptive Langevin algorithms for Neural Networks
Langevin versus non-Langevin for very deep learning
Langevin algorithms for Markovian Neural Networks and Deep Stochastic control
Policy Gradient Optimal Correlation Search for Variance Reduction in Monte
Carlo simulation and Maximum Optimal Transport
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Stochastic control

min
u

J(u) := E
[∫ T

0
G(Yt)dt + F (YT )

]
,

dYt = b(Yt , ut)dt + σ(Yt , ut)dWt , t ∈ [0,T ],

G: path-dependent return, F : final return, ut : control, Yt : trajectory.
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Discretization and numerical scheme

Euler-Maruyama scheme

min
θ

J̄(ūθ) := E
[ N−1∑

k=0
(tk+1 − tk)G(Ȳ θ

tk+1 ) + F (Ȳ θ
tN )
]
,

Ȳ θ
tk+1 = Ȳ θ

tk + (tk+1 − tk)b
(
Ȳ θ

tk , ūk,θ(Ȳ θ
tk )
)
+
√

tk+1 − tkσ
(
Ȳ θ

tk , ūk,θ(Ȳ θ
tk )
)
ξk+1,

ξk ∼ N (0, Id2 ) i.i.d.

Time discretization of [0,T ]: tk := kT/N, k ∈ {0, . . . ,N}, h := T/N.

Control u with parameter θ using either one time-dependant neural network
either N distinct neural networks: utk = ūθ(tk ,Ytk ) or utk = ūθk (Ytk )

We refer to (Gobet and Munos, 2005; Han and E, 2016).
The gradient is computed by recursively tracking the dependency of along the
trajectory (Giles and Glasserman, 2005; Giles, 2007).
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J̄(ūθ) := E
[ N−1∑

k=0
(tk+1 − tk)G(Ȳ θ
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u

· · · Ytk SDE Ytk+1 SDE Ytk+2 · · ·

G G G

· · · + + + · · ·

Figure: Markovian Neural Network with one control.

utk utk+1

· · · Ytk SDE Ytk+1 SDE Ytk+2 · · ·

G G G

· · · + + + · · ·

Figure: Markovian neural network with one control for every time step. Layer Langevin algorithms
can be used in this case.
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Fishing quotas, (Laurière, Pagès, and Pironneau, 2023)

Fish biomass Yt ∈ Rd1 with:
Inter-species interaction κYt

Fishing following imposed quotas ut

Objective: keep Yt close to an ideal state Yt .
Figure: Source: Unsplash

dYt = Yt ∗ ((r − ut − κYt)dt + ηdWt)

J(u) = E
[∫ T

0
(|Yt − Yt |2 − 〈α, ut〉)dt + β[u]0,T

]
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Deep Financial Hedging, (Buehler, Gonon, Teichmann, and Wood, 2019)

We aim to replicate some payoff Z defined on some
portfolio St by trading some of the assets with trans-
action costs; the control ut is the amount of held
assets. The objective is

Figure: Source: Unsplash

J(u) = ν

(
−Z +

N−1∑
k=0

〈utk , Stk+1 − Stk 〉 −
N∑

k=0
〈ctr , Stk ∗ |utk − utk−1 |〉

)

where ν is a convex risk measure. We consider the assets St to be follow a Heston
model and are tradable along with variance swap options.

Pierre BRAS Adaptive Gradient Langevin Algorithms 57 / 72



Introduction Convergence of Langevin algorithms Langevin for NN Conclusion

Results for Deep Hedging
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Figure: Comparison of algorithms with N = 30, 50, 50 respectively

Table: Best performance

Adam, N = 30 Adam, N = 50 Adadelta, N = 50
Vanilla 0.4448 0.6355 0.4671

Langevin 0.4306 0.4182 0.3773
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Figure: Training of the deep hedging problem with multiple controls with N = 10

Table: Best performance

Adam RMSprop Adadelta
Vanilla 0.7278 0.5618 1.2900

Langevin 0.6626 0.4441 0.9250
Layer Langevin 30% 0.6004 0.4102 0.8554
Layer Langevin 90% 0.6377 – –
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Outline

3 Adaptive Langevin algorithms for Neural Networks
Langevin versus non-Langevin for very deep learning
Langevin algorithms for Markovian Neural Networks and Deep Stochastic control
Policy Gradient Optimal Correlation Search for Variance Reduction in Monte
Carlo simulation and Maximum Optimal Transport
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For the process:
Y0 ∈ Rd , dYt = b(Yt)dt + σ(Yt)dWt ,

and f : Rd → R, we are looking for an estimator of E[f (YT )] with reduced variance.
We propose the unbiased estimator:

Correlation estimator

Estimator:
(
f (Y 1

T ) + f (Y 2
T )
)
/2,

dY 1
t = b(Y 1

t )dt + σ(Y 1
t )dW 1

t ,

dY 2
t = b(Y 2

t )dt + σ(Y 2
t )dW 2

t ,

d〈W 1
t ,W 2

t 〉 = ρtdt.

• For ρt ≡ −Id , this gives the antithetic method (Hammersley and Morton, 1956).
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Optimal correlation search

We look to minimize the variance of the estimator through the choice of
ρt = ρ(t,Y 1

t ,Y 2
t ) as a neural network.

We write the correlation search as stochastic control:

Minimize E
[
f (Y 1

T )f (Y 2
T )
]
.

We solve using gradient descent and Reinforcement Learning approaches.
Package relocor: REinforcement Learning Optimal CORrelation search, using
OpenAI Gym.
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Simulations
• We test variance reduction for option pricing with multi-basket Black-Scholes and
Heston models.
• We give examples where we achieve better than trivial correlations (antithetic,
minus-plus etc).
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Figure: Black-Scholes variance reduction with d = 2. Left: trajectories of the assets; Right:
coefficients of the diagonal matrix and cosine of the rotation matrix.
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Link with maximal optimal transport

We look to correlate two random variables Y 1
T and Y 2

T with fixed marginal law
and the variance reduction can be written as:

max
ρ

E
∣∣f (Y 1

T )− f (Y 2
T )
∣∣2.

Any coupling between Y 1
T and Y 2

T can be written as coupling W 1 and W 2 with ρ.
=⇒ Our reduction variance is in fact a L2-optimal maximal transport.
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Outline

4 Conclusion and perspectives
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Conclusion

A wide range of problems can be tackled with optimization methods and gradient
descent, while neural networks help to approximate the solution function.

We prove the convergence of Langevin algorithms with multiplicative noise and
give theoretical guarantees, whereas these algorithms has been used by
practitioners without theory.
We give theoretical founding including degenerate minimum cases.
We prove the interest of Langevin or Layer Langevin algorithms for various
problems, involving very deep learning.
Langevin algorithms have returned to the forefront of research: latent diffusion
generative models (Rombach et al., 2021).

Figure: Théâtre d’Opéra Spatial
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Thank you for your attention !
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