Algorithmes adaptatifs de gradient-Langevin pour l'optimisation stochastique et l'inférence Bayésienne

Pierre Bras Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université Sous la direction de Gilles Pagès

Séminaire de Mathématiques Appliquées - Collège de France

8 Décembre 2023

Introduction

- Optimization
- Stochastic gradient descent algorithm
- Langevin equation and algorithms
- Objectives

2 Convergence of adaptive Langevin-Simulated Annealing algorithms

- \bullet Convergence of Langevin-Simulated Annealing algorithms for \mathcal{W}_1 and d_{TV}
- Convergence rates of Gibbs measures with degenerate minimum

Adaptive Langevin algorithms for Neural Networks

- Langevin versus non-Langevin for very deep learning
- Langevin algorithms for Markovian Neural Networks and Deep Stochastic control

Outline

Introduction

- Optimization
- Stochastic gradient descent algorithm
- Langevin equation and algorithms
- Objectives

Introduction

Optimization

- Stochastic gradient descent algorithm
- Langevin equation and algorithms
- Objectives

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Optimization	problem		

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Optimization p	roblem		

Examples:

- Determining optimal allocation of resources to maximize production output while minimizing costs.
- Of Maximize the gains along a controlled time process with respect to the strategy.
- Minimize the error of a model to the true data for prediction and regression tasks.

• Data $(u_i, v_i) \in \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{out}}$ (inputs and outputs) for $1 \leq i \leq N$ with $N \gg 1$.

Conclusion

Example: Regression and Neural Networks

• Data $(u_i, v_i) \in \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{out}}$ (inputs and outputs) for $1 \leq i \leq N$ with $N \gg 1$.

• We want to find some formula relation between the inputs and the outputs:

Find $\Phi : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ such that: $\forall i, \ \Phi(u_i) \approx v_i$.

75

Example: Regression and Neural Networks

Introduction

• Data $(u_i, v_i) \in \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{out}}$ (inputs and outputs) for $1 \le i \le N$ with $N \gg 1$.

relation between the inputs and the outputs:

Find $\Phi : \mathbb{R}^{d_{\text{in}}} \to \mathbb{R}^{d_{\text{out}}}$ such that: $\forall i, \Phi(u_i) \approx v_i$.

• We parametrize Φ with a finite number of parameters: $\{\Phi_x : x \in \mathbb{R}^d\}$. For example, affine parametrization:

 $\Phi_{x_1,x_2}(u) = x_1 \cdot u + x_2$, x_1 matrix, x_2 vector.

• We want to find some formula

Convergence of Langevin algorithms

Langevin for NN

Conclusion

6/73

Langevin for NN

Conclusion

6/73

Example: Regression and Neural Networks

• Data $(u_i, v_i) \in \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{out}}$ (inputs and outputs) for $1 \leq i \leq N$ with $N \gg 1$.

• We want to find some formula relation between the inputs and the outputs:

Find $\Phi : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ such that: $\forall i, \ \Phi(u_i) \approx v_i$.

• We parametrize Φ with a finite number of parameters: $\{\Phi_x : x \in \mathbb{R}^d\}$. For example, affine parametrization:

 $\Phi_{x_1,x_2}(u) = x_1 \cdot u + x_2, \quad x_1 \text{ matrix}, \ x_2 \text{ vector}.$

• Objective as an optimization problem: minimize the MSE:

$$\min_{x\in\mathbb{R}^d}\frac{1}{N}\sum_{i=1}^N |\Phi_x(u_i)-v_i|^2 =:\min_{x\in\mathbb{R}^d}V(x).$$

• Neural Networks are families

of parametrized functions that can approximate many functions in practice (Cybenko, 1989), (AlexNet 2012).

• Neural Networks are families

of parametrized functions that can approximate many functions in practice (Cybenko, 1989), (AlexNet 2012).

• Written

as composition of linear and non-linear functions:

Input:
$$h_0 = u$$
,
 $h_k = \varphi(\alpha_k \cdot h_{k-1} + \beta_k) \in \mathbb{R}^{d_k}, \ 1 \le k \le K - 1$,
Output: $h_K = \alpha_K \cdot h_{K-1} + \beta_K =: \Phi_{(\alpha_k, \beta_k)_{0 \le k \le K}}(u)$

)

• Neural Networks are families

of parametrized functions that can approximate many functions in practice (Cybenko, 1989), (AlexNet 2012).

• Written

as composition of linear and non-linear functions:

$$\begin{split} &\text{Input: } h_0 = u, \\ &h_k = \varphi(\alpha_k \cdot h_{k-1} + \beta_k) \in \mathbb{R}^{d_k}, \ 1 \leq k \leq K - 1, \\ &\text{Output: } h_K = \alpha_K \cdot h_{K-1} + \beta_K =: \Phi_{(\alpha_k, \beta_k)_{\mathbf{0} \leq k \leq K}}(u) \end{split}$$

where

- φ is a non-linear function applied coordinate-wise,
- (d_k) is a sequence of dimensions,
- $(\alpha_k)_k$ are matrices and $(\beta_k)_k$ are vectors parametrizing the neural network.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	000	000	O

Figure: The Sigmoid and ReLU functions

Example: Computation of quantiles and VaR

For Z some random variable, the quantile of order $\alpha \in [0,1]$ is

$$q_{\alpha} := \inf\{u \in \mathbb{R} : \mathbb{P}(Z \le u) \ge \alpha\}.$$

Example: Computation of quantiles and VaR

For Z some random variable, the quantile of order $\alpha \in [0,1]$ is

$$q_{\alpha} := \inf\{u \in \mathbb{R} : \mathbb{P}(Z \le u) \ge \alpha\}.$$

Following (Uryasev and Rockafellar, 2001) we have the characterization:

$$q_{lpha} = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \left[x + rac{1}{1 - lpha} (Z - x)_+
ight],$$

where $(\cdot)_+$ denotes the positive part.

• Dynamical stochastic system Y_t depending on some control u_t with Brownian motion W_t:

 $dY_t^u = b(Y_t^u, u_t)dt + \sigma(Y_t^u, u_t)dW_t, \ t \in [0, T].$

• Dynamical stochastic system Y_t depending on some control u_t with Brownian motion W_t :

$$dY_t^u = b(Y_t^u, u_t)dt + \sigma(Y_t^u, u_t)dW_t, \ t \in [0, T].$$

• We choose the control to achieve

$$\min_{u} J(u) := \mathbb{E}\left[\int_{0}^{T} G(Y_{t}^{u}) dt + F(Y_{T}^{u})\right]$$

where G and F are some scalar functions.

• Dynamical stochastic system Y_t depending on some control u_t with Brownian motion W_t :

$$dY_t^u = b(Y_t^u, u_t)dt + \sigma(Y_t^u, u_t)dW_t, \ t \in [0, T].$$

• We choose the control to achieve

$$\min_{u} J(u) := \mathbb{E}\left[\int_{0}^{T} G(Y_{t}^{u}) dt + F(Y_{T}^{u})\right]$$

where G and F are some scalar functions.

• We can parametrize u by some neural network with parameter x:

$$u_t = u_x(t, Y_t)$$

and obtain an optimization problem on x with $V(x) = J(u_x)$.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Outline			

Introduction Optimization

• Stochastic gradient descent algorithm

- Langevin equation and algorithms
- Objectives

Gradient Descent Algorithm (GD)

Gradient descent algorithm: Assuming that $V \in C^1$, for each iteration compute the gradient and "go down" the gradient with non-increasing positive step sequence (γ_k) :

Gradient Descent Algorithm

With initialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n).$$

Gradient Descent Algorithm (GD)

Gradient descent algorithm: Assuming that $V \in C^1$, for each iteration compute the gradient and "go down" the gradient with non-increasing positive step sequence (γ_k) :

Gradient Descent Algorithm

With initialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n).$$

 \implies Greedy algorithm: focus on local improvements around the current position at each iteration.

Figure: Example of different variants of gradient descent algorithms with $V(x, y) = -\sin(x^2)\cos(3y^2)e^{-x^2y^2} - e^{-(x+y)^2}$.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Stochastic	Gradient Descent (SGD)		

() In big data applications with amount of data $N \gg 1$:

$$V(x) = rac{1}{N}\sum_{i=1}^N V_i(x).$$

() In big data applications with amount of data $N \gg 1$:

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} V_i(x).$$

2 In applications with some continuous random variable Z:

$$V(x) = \mathbb{E}_Z[v(x, Z)]$$

with no close form expression of the expectation.

In big data applications with amount of data $N \gg 1$:

$$V(x) = rac{1}{N}\sum_{i=1}^{N}V_i(x).$$

In applications with some continuous random variable Z:

$$V(x) = \mathbb{E}_Z[v(x, Z)]$$

with no close form expression of the expectation.

O Remark: in the 1st case we can also write:

$$V(x) = \mathbb{E}_{Z}[v(x, Z)], \quad Z \in \{1, \dots, N\}, \quad v(x, Z) = V_{Z}(x).$$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
	000	000	O
\Rightarrow	In both cases we write		

 $V(x) = \mathbb{E}_Z[v(x, Z)].$

Introduction	Convergence of Langevin algorithms 000	Langevin for NN 000	Conclusion O
\implies In	both cases we write		
	$V(x) = \mathbb{E}_Z[v(x, Z)]$	<u>[</u>)].	
Stochast	ic Gradient Descent Algorithm		
With init	ialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :	:	
	$x_{n+1} = x_n - \gamma_{n+1} \nabla v(x_n)$	$_n, Z_{n+1}),$	

 $Z_n \sim Z$ iid.

Introduction 00000	Convergence of Langevin algorithms 000	Langevin for NN 000	Conclusion O
\implies In	both cases we write		
	$V(x) = \mathbb{E}_{Z}[v(x, Z)]$	<i>[</i>)].	
Stochast	ic Gradient Descent Algorithm		

With initialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :

$$x_{n+1} = x_n - \gamma_{n+1} \nabla v(x_n, Z_{n+1}),$$

$$Z_n \sim Z \quad \text{i.i.d.}.$$

Stochastic Gradient Descent Algorithm, Mini-Batch version

With initialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :

$$x_{n+1} = x_n - \gamma_{n+1} \frac{1}{M} \sum_{i=1}^{M} \nabla v(x_n, Z_{n+1}^i),$$

$$Z_n^i \sim Z \text{ i.i.d.}$$

Introduction	Convergence of Langevin algorithms 000	Langevin for NN 000	Conclusion O
\Rightarrow	In both cases we write		
	$V(x) = \mathbb{E}_{Z}[v(x, Z)]$)].	
Stocha	astic Gradient Descent Algorithm		

With initialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :

$$x_{n+1} = x_n - \gamma_{n+1} \nabla v(x_n, Z_{n+1}),$$

$$Z_n \sim Z \quad \text{i.i.d.}.$$

Stochastic Gradient Descent Algorithm, Mini-Batch version

With initialization $x_0 \in \mathbb{R}^d$ and step sequence (γ_k) :

$$x_{n+1} = x_n - \gamma_{n+1} \frac{1}{M} \sum_{i=1}^{M} \nabla v(x_n, Z_{n+1}^i),$$
$$Z_n^i \sim Z \text{ i.i.d.}$$

Introduced in (Robbins and Monro, 1951); Robbins-Siegmund Lemma of convergence (Robbins and Siegmund, 1971).

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Outline			

1 Introduction

- Optimization
- Stochastic gradient descent algorithm

• Langevin equation and algorithms

• Objectives

The gradient descent x_n can be trapped in a local (but not global) minimum (e.g. if V is not convex):

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin Equati	on		

• We add a white noise to x_n , hoping to escape traps and explore:

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin Eq	uation		

• We add a white noise to x_n , hoping to escape traps and explore:

Stochastic Gradient Langevin Dynamics (SGLD), (Welling and Teh, 2011)

$$\begin{aligned} x_{n+1} &= x_n - \gamma_{n+1} \nabla \tilde{V}(x_n) + \sqrt{\gamma_{n+1}} \sigma \xi_{n+1}, \\ \xi_{n+1} &\sim \mathcal{N}(0, I_d), \ \sigma > 0. \end{aligned}$$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin Equati	on		

• We add a white noise to x_n , hoping to escape traps and explore:

Stochastic Gradient Langevin Dynamics (SGLD), (Welling and Teh, 2011)

$$\begin{aligned} x_{n+1} &= x_n - \gamma_{n+1} \nabla \tilde{V}(x_n) + \sqrt{\gamma_{n+1}} \sigma \xi_{n+1}, \\ \xi_{n+1} &\sim \mathcal{N}(0, I_d), \ \sigma > 0. \end{aligned}$$

The noise is **exogenous** and scales as $\sqrt{\gamma_{n+1}}$.
Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin Equati	on		

• We add a white noise to x_n , hoping to escape traps and explore:

Stochastic Gradient Langevin Dynamics (SGLD), (Welling and Teh, 2011)

$$\begin{aligned} x_{n+1} &= x_n - \gamma_{n+1} \nabla \tilde{V}(x_n) + \sqrt{\gamma_{n+1}} \sigma \xi_{n+1}, \\ \xi_{n+1} &\sim \mathcal{N}(0, I_d), \ \sigma > 0. \end{aligned}$$

The noise is **exogenous** and scales as $\sqrt{\gamma_{n+1}}$.

• The continuous version becomes:

Langevin equation

$$dX_s = -\nabla V(X_s) ds + \sigma dW_s$$

where (W_s) is a Brownian motion.

• Its invariant measure is the Gibbs measure

$$u_{\sigma}(x)dx \propto e^{-2V(x)/\sigma^2}dx.$$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin Equat	ion		

• We add a white noise to x_n , hoping to escape traps and explore:

Stochastic Gradient Langevin Dynamics (SGLD), (Welling and Teh, 2011)

$$\begin{aligned} x_{n+1} &= x_n - \gamma_{n+1} \nabla \tilde{V}(x_n) + \sqrt{\gamma_{n+1}} \sigma \xi_{n+1}, \\ \xi_{n+1} &\sim \mathcal{N}(0, I_d), \ \sigma > 0. \end{aligned}$$

The noise is **exogenous** and scales as $\sqrt{\gamma_{n+1}}$.

• The continuous version becomes:

Langevin equation

$$dX_s = -\nabla V(X_s) ds + \sigma dW_s$$

where (W_s) is a Brownian motion.

• Its invariant measure is the Gibbs measure

$$u_{\sigma}(x)dx \propto e^{-2V(x)/\sigma^2}dx.$$

• For small σ , ν_{σ} is concentrated around $\operatorname{argmin}(V)$: Solve the Langevin equation \implies approximation of $\nu_{\sigma} \implies$ approximation of $\operatorname{argmin}(V)$.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	000	000	O

Figure: Concentration of Gibbs measure

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	000	000	O

Figure: Concentration of Gibbs measure

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	000	000	O

Figure: Concentration of Gibbs measure

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Bayesian	inference and sampling from dist	ribution	

Stochastic algorithms are also used for sampling from a probability measure.

• Given data u_1, \ldots, u_N with $N \gg 1$, we consider a family of probability distributions $\{p(u|x)du: x \in \mathbb{R}^d\}$ and a prior densities $p_0(x)dx$. Then the posterior distribution on x, $p(x|u_1, \ldots, u_N)$, has density proportional to

$$p_0(x)p(u_1|x)...p(u_N|x) =: e^{-V(x)},$$

$$V(x) := -\log(p_0(x)) - \log(p(u_1|x)) - \cdots - \log(p(u_N|x)),$$

which is invariant measure of $dX_s = -\nabla V(x)ds + \sqrt{2}dW_s$ (Welling and Teh, 2011).

Stochastic algorithms are also used for sampling from a probability measure.

• Given data u_1, \ldots, u_N with $N \gg 1$, we consider a family of probability distributions $\{p(u|x)du: x \in \mathbb{R}^d\}$ and a prior densities $p_0(x)dx$. Then the posterior distribution on x, $p(x|u_1, \ldots, u_N)$, has density proportional to

$$p_0(x)p(u_1|x)...p(u_N|x) =: e^{-V(x)},$$

$$V(x) := -\log(p_0(x)) - \log(p(u_1|x)) - \cdots - \log(p(u_N|x)),$$

which is invariant measure of $dX_s = -\nabla V(x)ds + \sqrt{2}dW_s$ (Welling and Teh, 2011).

• (Lamberton and Pagès, 2002, 2003) introduce and analyze sampling from a probability measure ν as invariant measure of $dX_t = b(X_t)dt + \sigma(X_t)dW_t$:

Stochastic algorithms are also used for sampling from a probability measure.

• Given data u_1, \ldots, u_N with $N \gg 1$, we consider a family of probability distributions $\{p(u|x)du: x \in \mathbb{R}^d\}$ and a prior densities $p_0(x)dx$. Then the posterior distribution on x, $p(x|u_1, \ldots, u_N)$, has density proportional to

$$p_0(x)p(u_1|x)...p(u_N|x) =: e^{-V(x)},$$

$$V(x) := -\log(p_0(x)) - \log(p(u_1|x)) - \cdots - \log(p(u_N|x)),$$

which is invariant measure of $dX_s = -\nabla V(x)ds + \sqrt{2}dW_s$ (Welling and Teh, 2011).

• (Lamberton and Pagès, 2002, 2003) introduce and analyze sampling from a probability measure ν as invariant measure of $dX_t = b(X_t)dt + \sigma(X_t)dW_t$:

$$\begin{split} \bar{X}_{n+1} &= \bar{X}_n + \gamma_{n+1} b(\bar{X}_n) + \sqrt{\gamma_{n+1}} \sigma(\bar{X}_n) U_{n+1}, \quad U_n \sim \mathcal{N}(0, I_d) \text{ i.i.d.}, \\ \nu_n &:= \frac{1}{\Gamma_n} \sum_{k=1}^n \gamma_k \delta_{\bar{X}_k}, \quad \Gamma_n = \gamma_1 + \ldots + \gamma_n. \end{split}$$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin	Simulated Annealing		

• Another possibility : make $\sigma \rightarrow 0$ while iterating the algorithm:

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin	Simulated Annealing		

ullet Another possibility : make $\sigma \rightarrow 0$ while iterating the algorithm:

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + \mathbf{a}(\gamma_1 + \dots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, I_d)$$

where a(t) is decreasing and $a(t) \xrightarrow[t \to \infty]{} 0$.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin	Simulated Annealing		

ullet Another possibility : make $\sigma \rightarrow 0$ while iterating the algorithm:

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + a(\gamma_1 + \dots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, I_d),$$

where a(t) is decreasing and $a(t) \xrightarrow[t \to \infty]{} 0$. The continuous version becomes

Langevin-Simulated Annealing Equation

 $dX_t = -\nabla V(X_t)dt + \frac{\mathbf{a}(t)\sigma dW_t}{\mathbf{A}(t)\sigma dW_t},$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin	Simulated Annealing		

ullet Another possibility : make $\sigma \rightarrow 0$ while iterating the algorithm:

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + \mathbf{a}(\gamma_1 + \cdots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(\mathbf{0}, I_d),$$

where a(t) is decreasing and $a(t) \xrightarrow[t \to \infty]{} 0$. The continuous version becomes :

Langevin-Simulated Annealing Equation

$$dX_t = -\nabla V(X_t)dt + \frac{a(t)\sigma dW_t}{\sigma dW_t},$$

• The 'instantaneous' invariant measure $\nu_{a(t)\sigma}(dx) \propto \exp\left(-2V(x)/(a^2(t)\sigma^2)\right)$ converges itself to argmin(V)

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin	Simulated Annealing		

• Another possibility : make $\sigma
ightarrow$ 0 while iterating the algorithm:

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + \mathbf{a}(\gamma_1 + \cdots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(\mathbf{0}, I_d),$$

where a(t) is decreasing and $a(t) \xrightarrow[t \to \infty]{} 0$. The continuous version becomes

Langevin-Simulated Annealing Equation

$$dX_t = -\nabla V(X_t)dt + \frac{a(t)\sigma}{\sigma}dW_t,$$

- The 'instantaneous' invariant measure $\nu_{a(t)\sigma}(dx) \propto \exp\left(-2V(x)/(a^2(t)\sigma^2)\right)$ converges itself to $\operatorname{argmin}(V)$
- Schedule $a(t) = A \log^{-1/2}(t)$ then $X_t \xrightarrow[t \to \infty]{} \operatorname{argmin}(V)$ in law (Chiang et al., 1987; Miclo, 1992)

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Langevin	Simulated Annealing		

• Another possibility : make $\sigma
ightarrow$ 0 while iterating the algorithm:

$$x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + \mathbf{a}(\gamma_1 + \cdots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(\mathbf{0}, I_d),$$

where a(t) is decreasing and $a(t) \xrightarrow[t \to \infty]{} 0$. The continuous version becomes

Langevin-Simulated Annealing Equation

$$dX_t = -\nabla V(X_t)dt + \frac{a(t)\sigma}{\sigma}dW_t,$$

- The 'instantaneous' invariant measure $\nu_{a(t)\sigma}(dx) \propto \exp\left(-2V(x)/(a^2(t)\sigma^2)\right)$ converges itself to argmin(V)
- Schedule $a(t) = A \log^{-1/2}(t)$ then $X_t \xrightarrow[t \to \infty]{} \operatorname{argmin}(V)$ in law (Chiang et al., 1987; Miclo, 1992)
- (Gelfand and Mitter, 1991): the convergence of the algorithm (x_n) .

 $dX_t = -\nabla V(X_t)dt + \frac{a(t)\sigma}{dW_t},$

Idea of proof in (Miclo, 1992):

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Convergence of	Langevin Simulated Anneali	ng with Kullback-Lieb	ler

 $dX_t = -\nabla V(X_t)dt + \frac{a(t)\sigma dW_t}{a(t)\sigma dW_t},$

Idea of proof in (Miclo, 1992):

divergence

• We consider the KL-divergence:

$$\mathcal{J}_t := \mathsf{d}_{\mathsf{KL}}\left(X_t \| \nu_{\mathsf{a}(t)}\right) = \int_{\mathbb{R}^d} \log\left(\frac{p(t,x)}{\nu_{\mathsf{a}(t)}(x)}\right) p(t,x) dx,$$

with p(x, t) the density of X_t .

Introduction	
0000	

Convergence of Langevin Simulated Annealing with Kullback-Liebler divergence

$$dX_t = -\nabla V(X_t)dt + \frac{a(t)\sigma}{dW_t},$$

Idea of proof in (Miclo, 1992):

• We consider the KL-divergence:

$$\mathcal{J}_t := \mathsf{d}_{\mathsf{KL}}\left(X_t \| \nu_{\mathsf{a}(t)}\right) = \int_{\mathbb{R}^d} \log\left(\frac{p(t,x)}{\nu_{\mathsf{a}(t)}(x)}\right) p(t,x) dx,$$

with p(x, t) the density of X_t .

• Fokker-Planck equation:

$$\partial_t p(t,x) = \nabla \cdot (\nabla V(x)p(t,x)) + \frac{1}{2}a^2(t)\Delta p(t,x)$$

• Log-Sobolev inequality:

$$\int_{\mathbb{R}^d} f^2 \log(f^2) d\nu_{a(t)} \leq C \int_{\mathbb{R}^d} |\nabla f|^2 d\nu_{a(t)} + \left(\int_{\mathbb{R}^d} f^2 d\nu_{a(t)} \right) \log \left(\int_{\mathbb{R}^d} f^2 d\nu_{a(t)} \right)$$

• Using integration by parts on $d\mathcal{J}/dt$, we obtain a bound and the convergence of \mathcal{J}_t to 0.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Multiplicativ	ve noise and Adaptive algorithms		

• Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Multiplicativ	e noise and Adaptive algorithms	5	

- Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V.
- Instead $\sigma(X_t)$ is a matrix depending on the position.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Multiplicativ	e noise and Adaptive algorithm	S	

- Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V.
- Instead : $\sigma(X_t)$ is a matrix depending on the position.
- Extensively used in Machine Learning without theoretical guarantee.

- Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V.
- Instead : $\sigma(X_t)$ is a matrix depending on the position.
- Extensively used in Machine Learning without theoretical guarantee.

$$dY_{t} = -(\sigma\sigma^{\top}\nabla V)(Y_{t})dt + a(t)\sigma(Y_{t})dW_{t} + \underbrace{\left(a^{2}(t)\left[\sum_{j=1}^{d}\partial_{i}(\sigma\sigma^{\top})(Y_{t})_{ij}\right]_{1 \leq i \leq d}\right)dt}_{\text{correction term }\Upsilon(Y_{t})}$$

$$a(t) = A/\sqrt{\log(t)}.$$

- \bullet Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V
- Instead $\sigma(X_t)$ is a matrix depending on the position.
- Extensively used in Machine Learning without theoretical guarantee.

$$dY_{t} = -(\sigma\sigma^{\top}\nabla V)(Y_{t})dt + a(t)\sigma(Y_{t})dW_{t} + \underbrace{\left(a^{2}(t)\left[\sum_{j=1}^{d}\partial_{i}(\sigma\sigma^{\top})(Y_{t})_{ij}\right]_{1 \leq i \leq d}\right)dt}_{\text{correction term }\Upsilon(Y_{t})}$$
$$a(t) = A/\sqrt{\log(t)}.$$

• Correction term so that $\nu_{a(t)} \propto \exp\left(-2V(x)/a^2(t)\right)$ is still the "instantaneous" invariant measure (Li et al., 2016; Pagès and Panloup, 2023).

Introduction

- Optimization
- Stochastic gradient descent algorithm
- Langevin equation and algorithms
- Objectives

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Objectives			

I: Convergence of adaptive Langevin algorithms

- Convergence of the Langevin equation Y_t with multiplicative noise to $\operatorname{argmin}(V)$ as well as the discretized scheme \bar{Y}_t .
- Weak convergence for Wasserstein-1 and Total Variation.
- For $\mathcal{D} = \mathcal{W}_1$ or d_{TV} and ν^\star being the target measure, we have

$$\mathcal{D}(Y_t,\nu^{\star}) \leq \mathcal{D}(Y_t,\nu_{a(t)}) + \mathcal{D}(\nu_{a(t)},\nu^{\star}).$$

II: Adaptive Langevin algorithms for deep neural networks

- Implement Langevin algorithms for different choices of σ (Adam, RMSprop, Adadelta etc) and compare with their corresponding non-Langevin counterpart.
- Investigate the benefits of Langevin algorithms on very deep learning.

Convergence of adaptive Langevin-Simulated Annealing algorithms

- \bullet Convergence of Langevin-Simulated Annealing algorithms for \mathcal{W}_1 and d_{TV}
- Convergence rates of Gibbs measures with degenerate minimum

Introd	u c	tio	
00000			

2 Convergence of adaptive Langevin-Simulated Annealing algorithms

- \bullet Convergence of Langevin-Simulated Annealing algorithms for \mathcal{W}_1 and d_{TV}
- Convergence rates of Gibbs measures with degenerate minimum

- Pierre Bras and Gilles Pagès. Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise. Mathematics of Computation, 2023.
- Pierre Bras and Gilles Pagès. Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise II: Total Variation. Monte Carlo Methods and Applications, 29(3):203–219, 2023.

$$dY_t = -(\sigma\sigma^\top \nabla V)(Y_t)dt + a(t)\sigma(Y_t)dW_t + \left(a^2(t)\left[\sum_{j=1}^d \partial_j(\sigma\sigma^\top)(Y_t)_{ij}\right]_{1 \le i \le d}\right)dt$$

 $u_{a(t)} \propto \exp\left(-2V(x)/a^2(t)\right)$ instantaneous invariant measure, $u^* = \lim_{a \to 0}
u_a.$

 $a(t) = A/\sqrt{\log(t)},$

correction term $\Upsilon(Y_t)$

$$dY_t = -(\sigma\sigma^\top \nabla V)(Y_t)dt + a(t)\sigma(Y_t)dW_t + \underbrace{\left(a^2(t) \left[\sum_{j=1}^d \partial_j(\sigma\sigma^\top)(Y_t)_{ij}\right]_{1 \le i \le d}\right)dt}_{\text{correction term } \Upsilon(Y_t)}$$

$$\begin{split} a(t) &= A/\sqrt{\log(t)}, \\ \nu_{a(t)} \propto \exp\left(-2V(x)/a^2(t)\right) \text{ instantaneous invariant measure, } \nu^{\star} = \lim_{a \to 0} \nu_a. \end{split}$$

Prove the convergence of Y_t to ν^{\star} for \mathcal{W}_1 and d_{TV} :

$$\begin{aligned} \mathcal{W}_{1}(X,Y) &= \sup\left\{ \left| \mathbb{E}[f(X)] - \mathbb{E}[f(Y)] \right| : [f]_{\mathsf{Lip}} = 1 \right\}, \\ \mathsf{d}_{\mathsf{TV}}(X,Y) &= \sup\left\{ \left| \mathbb{E}[f(X)] - \mathbb{E}[f(Y)] \right| : \sup_{\mathbb{R}^{d}} f = 1 \right\}. \end{aligned}$$

$$\frac{1}{2} O(Y_t) = -(\sigma \sigma^\top \nabla V)(Y_t) dt + a(t)\sigma(Y_t) dW_t + \left(a^2(t) \left[\sum_{j=1}^d \partial_i (\sigma \sigma^\top)(Y_t)_{ij}\right]_{1 \le i \le d}\right) dt$$

correction term
$$\Upsilon(Y_t)$$

$$\begin{split} a(t) &= A/\sqrt{\log(t)}, \\ \nu_{a(t)} &\propto \exp\left(-2V(x)/a^2(t)\right) \text{ instantaneous invariant measure, } \quad \nu^* = \lim_{a \to 0} \nu_a. \end{split}$$

Prove the convergence of Y_t to ν^* for \mathcal{W}_1 and d_{TV} :

$$\begin{split} \mathcal{W}_{\mathbf{1}}(X,Y) &= \sup\left\{ \left| \mathbb{E}[f(X)] - \mathbb{E}[f(Y)] \right| : \ [f]_{\mathsf{Lip}} = 1 \right\}, \\ \mathsf{d}_{\mathsf{TV}}(X,Y) &= \sup\left\{ \left| \mathbb{E}[f(X)] - \mathbb{E}[f(Y)] \right| : \ \sup_{\mathbb{R}^d} f = 1 \right\}. \end{split}$$

Important assumptions (Pagès and Panloup, 2023):

• V is strongly convex outside some compact set, ∇V is Lipschitz.

2 σ is bounded and elliptic: $\sigma \sigma^{\top} \geq \sigma_0 I_d$, $\sigma_0 > 0$.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion

Domino strategy

- (Pagès and Panloup, 2023): convergence of the Euler scheme of a general SDE $dX_t = b(X_t)dt + \sigma(X_t)dW_t$ to the invariant measure ν^* .
- Domino strategy: (Pagès and Panloup, 2023) for f 1-Lipschitz, P¹, P² kernels of processes X, Y, (γ_n) step sequence and Γ_n := γ₁ + · · · + γ_n, we have:

$$\begin{aligned} W_{1}(Y_{\Gamma_{n}},X_{\Gamma_{n}}) &\leq |\mathbb{E}f(Y_{\Gamma_{n}}) - \mathbb{E}f(X_{\Gamma_{n}})| \\ &= |P_{\gamma_{1}}^{2} \circ \cdots \circ P_{\gamma_{n}}^{2}f(x) - P_{\Gamma_{n}}^{1}f(x)| \\ &= \left|\sum_{k=1}^{n} P_{\gamma_{1}}^{2} \circ \cdots \circ P_{\gamma_{k-1}}^{2} \circ (P_{\gamma_{k}}^{2} - P_{\gamma_{k}}^{1}) \circ P_{\Gamma_{n}-\Gamma_{k}}^{1}f(x)\right| \\ &\leq \sum_{k=1}^{n} \left|P_{\gamma_{1}}^{2} \circ \cdots \circ P_{\gamma_{k-1}}^{2} \circ (P_{\gamma_{k}}^{2} - P_{\gamma_{k}}^{1}) \circ P_{\Gamma_{n}-\Gamma_{k}}^{1}f(x)\right|, \end{aligned}$$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion

Domino strategy

- (Pagès and Panloup, 2023): convergence of the Euler scheme of a general SDE $dX_t = b(X_t)dt + \sigma(X_t)dW_t$ to the invariant measure ν^* .
- Domino strategy: (Pagès and Panloup, 2023) for f 1-Lipschitz, P¹, P² kernels of processes X, Y, (γ_n) step sequence and Γ_n := γ₁ + · · · + γ_n, we have:

$$\begin{aligned} \mathcal{W}_{1}(Y_{\Gamma_{n}},X_{\Gamma_{n}}) &\leq |\mathbb{E}f(Y_{\Gamma_{n}}) - \mathbb{E}f(X_{\Gamma_{n}})| \\ &= |P_{\gamma_{1}}^{2} \circ \cdots \circ P_{\gamma_{n}}^{2}f(x) - P_{\Gamma_{n}}^{1}f(x)| \\ &= \left|\sum_{k=1}^{n} P_{\gamma_{1}}^{2} \circ \cdots \circ P_{\gamma_{k-1}}^{2} \circ (P_{\gamma_{k}}^{2} - P_{\gamma_{k}}^{1}) \circ P_{\Gamma_{n}-\Gamma_{k}}^{1}f(x)\right| \\ &\leq \sum_{k=1}^{n} \left|P_{\gamma_{1}}^{2} \circ \cdots \circ P_{\gamma_{k-1}}^{2} \circ (P_{\gamma_{k}}^{2} - P_{\gamma_{k}}^{1}) \circ P_{\Gamma_{n}-\Gamma_{k}}^{1}f(x)\right| \end{aligned}$$

In the sum we bound two types of terms:

- **()** For large $k \implies$ Error in small time \implies use bounds for $||X_t^x Y_t^x||_p$
- 3 For small $k \implies$ Ergodic properties (Eberle, 2016; Wang, 2020).

- Problem: non-homogeneous Markov chain + the ellipticity parameter fades away in a(t).
- \implies What is the dependency of the constants C and ho in the ellipticity ?

- Problem: non-homogeneous Markov chain + the ellipticity parameter fades away in a(t).
- \implies What is the dependency of the constants C and ho in the ellipticity ?

Consider $dX_t = b(X_t)dt + a\sigma(X_t)dW_t$, a > 0 with invariant measure ν_a and with

$$\forall x, y \in \mathcal{B}(0, R)^c, \ \langle b(x) - b(y), x - y \rangle + \frac{a^2}{2} \|\sigma(x) - \sigma(y)\|^2 \leq -\alpha |x - y|^2.$$

Then

$$\begin{aligned} \mathcal{W}_1(X_t^x, X_t^y) &\leq C e^{C_1/a^2} |x - y| e^{-\rho_a t}, \quad \rho_a := e^{-C_2/a^2} \\ \mathcal{W}_1(X_t^x, \nu_a) &\leq C e^{C_1/a^2} e^{-\rho_a t} \mathbb{E} |\nu_a - x|. \end{aligned}$$

Introduction	Convergence of Langevin algorithms ∩≜∩	Langevin for NN	Conclusion
"By plateaux"	process		

We first consider the plateau SDE:

$$dX_t = -\sigma\sigma^\top \nabla V(X_t)dt + a_{n+1}\sigma(X_t)dW_t + a_{n+1}^2\Upsilon(X_t)dt, \quad t \in [T_n, T_{n+1}),$$
$$a_n = A \log^{-1/2}(T_n)$$

Introduction	Convergence of Langevin algorithms ∩≜∩	Langevin for NN	Conclusion
"By plateaux" p	rocess		

We first consider the plateau SDE:

$$dX_t = -\sigma\sigma^\top \nabla V(X_t)dt + a_{n+1}\sigma(X_t)dW_t + a_{n+1}^2\Upsilon(X_t)dt, \quad t \in [T_n, T_{n+1}),$$
$$a_n = A \log^{-1/2}(T_n)$$

We apply the contraction property on every plateau:

$$\mathcal{W}_{1}(X_{\mathcal{T}_{n+1}},\nu_{a_{n+1}}\mid X_{\mathcal{T}_{n}}) \leq Ce^{C_{1}/a_{n+1}^{2}}e^{-\rho_{a_{n+1}}(\mathcal{T}_{n+1}-\mathcal{T}_{n})}\mathbb{E}\left[|\nu_{a_{n+1}}-X_{\mathcal{T}_{n}}\mid |X_{\mathcal{T}_{n}}\right].$$
Introduction	Convergence of Langevin algorithms ∩≜∩	Langevin for NN	Conclusion
"By plateaux" p	rocess		

We first consider the plateau SDE:

$$dX_t = -\sigma\sigma^\top \nabla V(X_t)dt + a_{n+1}\sigma(X_t)dW_t + a_{n+1}^2\Upsilon(X_t)dt, \quad t \in [T_n, T_{n+1}],$$
$$a_n = A \log^{-1/2}(T_n)$$

We apply the contraction property on every plateau:

$$\mathcal{W}_{1}(X_{T_{n+1}}, \nu_{a_{n+1}} | X_{T_{n}}) \leq C e^{C_{1}/a_{n+1}^{2}} e^{-\rho_{a_{n+1}}(T_{n+1}-T_{n})} \mathbb{E}\left[|\nu_{a_{n+1}} - X_{T_{n}}| | X_{T_{n}} \right].$$

We integrate over the law of X_{T_n} , giving

$$\begin{split} \mathcal{W}_{1}(X_{T_{n+1}}^{\mathbf{x_{0}}},\nu_{a_{n+1}}) &\leq Ce^{C_{1}/a_{n+1}^{2}}e^{-\rho_{a_{n+1}}(T_{n+1}-T_{n})}\mathcal{W}_{1}(X_{T_{n}}^{\mathbf{x_{0}}},\nu_{a_{n+1}}) \\ &\leq Ce^{C_{1}/a_{n+1}^{2}}e^{-\rho_{a_{n+1}}(T_{n+1}-T_{n})}\left(\mathcal{W}_{1}(X_{T_{n}}^{\mathbf{x_{0}}},\nu_{a_{n}})+\mathcal{W}_{1}(\nu_{a_{n}},\nu_{a_{n+1}})\right). \end{split}$$

Introduction	Convergence of Langevin algorithms ∩≜∩	Langevin for NN	Conclusion
"By plateaux" p	rocess		

We first consider the plateau SDE:

$$dX_t = -\sigma\sigma^\top \nabla V(X_t)dt + a_{n+1}\sigma(X_t)dW_t + a_{n+1}^2\Upsilon(X_t)dt, \quad t \in [T_n, T_{n+1}],$$
$$a_n = A \log^{-1/2}(T_n)$$

We apply the contraction property on every plateau:

$$\mathcal{W}_{1}(X_{T_{n+1}},\nu_{a_{n+1}} | X_{T_{n}}) \leq C e^{C_{1}/a_{n+1}^{2}} e^{-\rho_{a_{n+1}}(T_{n+1}-T_{n})} \mathbb{E}\left[|\nu_{a_{n+1}} - X_{T_{n}}| | X_{T_{n}} \right].$$

We integrate over the law of X_{T_n} , giving

$$\begin{aligned} \mathcal{W}_{1}(X_{T_{n+1}}^{\mathbf{x_{0}}},\nu_{a_{n+1}}) &\leq Ce^{C_{1}/a_{n+1}^{2}}e^{-\rho_{a_{n+1}}(T_{n+1}-T_{n})}\mathcal{W}_{1}(X_{T_{n}}^{\mathbf{x_{0}}},\nu_{a_{n+1}}) \\ &\leq Ce^{C_{1}/a_{n+1}^{2}}e^{-\rho_{a_{n+1}}(T_{n+1}-T_{n})}\left(\mathcal{W}_{1}(X_{T_{n}}^{\mathbf{x_{0}}},\nu_{a_{n}})+\mathcal{W}_{1}(\nu_{a_{n}},\nu_{a_{n+1}})\right). \end{aligned}$$

And we iterate:

$$\begin{aligned} \mathcal{W}_{1}(X_{T_{n+1}}^{\mathbf{x_{0}}},\nu_{\mathbf{a}_{n+1}}) &\leq \mu_{n+1}\mathcal{W}_{1}(\nu_{\mathbf{a}_{n}},\nu_{\mathbf{a}_{n+1}}) + \mu_{n+1}\mu_{n}\mathcal{W}_{1}(\nu_{\mathbf{a}_{n-1}},\nu_{\mathbf{a}_{n}}) + \cdots \\ &+ \mu_{n+1}\cdots\mu_{1}\mathcal{W}_{1}(\nu_{\mathbf{a}_{0}},\nu_{\mathbf{a}_{1}}) + \mu_{n+1}\cdots\mu_{1}\mathcal{W}_{1}(\delta_{\mathbf{x}_{0}},\nu_{\mathbf{a}_{0}}), \\ \mu_{n} &:= Ce^{C_{1}/a_{n}^{2}}e^{-\rho_{a_{n}}(T_{n}-T_{n-1})}. \end{aligned}$$

$$\mathcal{W}_{1}(X_{T_{n+1}}^{x_{0}},\nu_{a_{n+1}}) \leq \mu_{n+1}\mathcal{W}_{1}(\nu_{a_{n}},\nu_{a_{n+1}}) + \mu_{n+1}\mu_{n}\mathcal{W}_{1}(\nu_{a_{n-1}},\nu_{a_{n}}) + \cdots + \mu_{n+1}\cdots\mu_{1}\mathcal{W}_{1}(\nu_{a_{0}},\nu_{a_{1}}) + \mu_{n+1}\cdots\mu_{1}\mathcal{W}_{1}(\delta_{x_{0}},\nu_{a_{0}}), \mu_{n} = Ce^{C_{1}/a_{n}^{2}}e^{-\rho_{a_{n}}(T_{n}-T_{n-1})}, \quad \rho_{a_{n}} = e^{-C_{2}/a_{n}^{2}}$$

We use (technical)

$$\mathcal{W}_1(
u_{a_n},
u_{a_{n+1}}) \leq C(a_n-a_{n+1}).$$

$$\mathcal{W}_{1}(X_{T_{n+1}}^{x_{0}}, \nu_{a_{n+1}}) \leq \mu_{n+1}\mathcal{W}_{1}(\nu_{a_{n}}, \nu_{a_{n+1}}) + \mu_{n+1}\mu_{n}\mathcal{W}_{1}(\nu_{a_{n-1}}, \nu_{a_{n}}) + \cdots \\ + \mu_{n+1}\cdots\mu_{1}\mathcal{W}_{1}(\nu_{a_{0}}, \nu_{a_{1}}) + \mu_{n+1}\cdots\mu_{1}\mathcal{W}_{1}(\delta_{x_{0}}, \nu_{a_{0}}), \\ \mu_{n} = Ce^{C_{1}/a_{n}^{2}}e^{-\rho_{a_{n}}(T_{n}-T_{n-1})}, \quad \rho_{a_{n}} = e^{-C_{2}/a_{n}^{2}}$$

We use (technical)

$$\mathcal{W}_1(\nu_{a_n},\nu_{a_{n+1}}) \leq C(a_n-a_{n+1}).$$

We now choose

$$T_{n+1}-T_n=Cn^eta,eta>0, \quad a_n=rac{A}{\sqrt{\log(T_n)}}, \quad A>0 \, ext{ large enough}$$

yielding

$$\mathcal{W}_1(X_{\mathcal{T}_{n+1}}^{\mathbf{x_0}},\nu_{\mathbf{a}_{n+1}}) \leq C(1+|\mathbf{x}_0|)\mu_n \mathbf{a}_n,$$

where $\mu_n = O\left(\exp(-Cn^\eta)\right)$.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	○●○	000	O

- This gives the convergence of X_t to its instantaneous invariant measure.
- To get the convergence of X_t to ν^* , we rely to classical bounds on $\mathcal{W}_1(\nu_{a_n}, \nu^*)$ (see later).

Introduction Convergence of Langevin algorithms Langevin for NN Conclusion C

Convergence of Y_t with continuously decreasing (a(t))

• We apply domino strategy to bound $\mathcal{W}_1(X_t, Y_t)$:

• For f Lipschitz-continuous and fixed T > 0:

$$\begin{aligned} &\left| \mathbb{E}f(X_{T_{n+1}-T_n}^{x,n}) - \mathbb{E}f(Y_{T_{n+1}-T_n,T_n}^x) \right| \\ &\leq \sum_{k=1}^{\lfloor (T_{n+1}-T_n-T)/\gamma \rfloor} \left| P_{(k-1)\gamma,T_n}^Y \circ (P_{\gamma,T_n+(k-1)\gamma}^Y - P_{\gamma}^{X,n}) \circ P_{T_{n+1}-T_n-k\gamma}^{X,n} f(x) \right| \\ &+ \sum_{k=\lfloor (T_{n+1}-T_n-T)/\gamma \rfloor+1}^{\lfloor (T_{n+1}-T_n)/\gamma \rfloor} \left| P_{(k-1)\gamma,T_n}^Y \circ (P_{\gamma,T_n+(k-1)\gamma}^Y - P_{\gamma}^{X,n}) \circ P_{T_{n+1}-T_n-k\gamma}^{X,n} f(x) \right| \end{aligned}$$

• For $k = 1, ..., (T_{n+1} - T_n - T)/\gamma$, the kernel $P_{T_{n+1} - T_n - k\gamma}^{X,n}$ has an exponential contraction effect on time > T:

 $|(P_{\gamma,T_{n+(k-1)\gamma}}^{\gamma} - P_{\gamma}^{X,n}) \circ P_{T_{n+1}-T_{n-k\gamma}}^{X,n} f(x)| \le Ce^{C_{1}a_{n+1}^{-2}}e^{-\rho_{n+1}(T_{n+1}-T_{n-k\gamma})}[f]_{\text{Lip}}\sqrt{\gamma}(a_{n}-a_{n+1})$

 \bullet Bounds for the error on time intervals no longer than \mathcal{T} :

$$|(P_{\gamma,T_{n}+(k-1)\gamma}^{Y}-P_{\gamma}^{X,n})\circ P_{T_{n+1}-T_{n}-k\gamma}^{X,n}f(x)| \le Ca_{n+1}^{-2}(a_{n}-a_{n+1})[f]_{\text{Lip}}\frac{\gamma V(x)}{\sqrt{T_{n+1}-T_{n}-k\gamma}}$$

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	○●○	000	O

ullet We apply on the time interval $[{\mathcal T}_n, {\mathcal T}_{n+1}]$ and obtain the recursive inequality

$$\mathcal{W}_{1}(X_{T_{n+1}-T_{n}}^{x,n},Y_{T_{n+1}-T_{n},T_{n}}^{x}) \leq \underbrace{Ce^{C_{1}a_{n+1}^{-2}}(a_{n}-a_{n+1})\rho_{n+1}^{-1}}_{=:\lambda_{n+1}}V(x).$$

With
$$x_n := X_{T_n}^{x_0}, y_n = Y_{T_n}^{x_0}$$

 $\mathcal{W}_1(X_{T_{n+1}}^{x_0}, Y_{T_{n+1}}^{x_0}) = \mathcal{W}_1(X_{T_{n+1}-T_n}^{x_n, n}, Y_{T_{n+1}-T_n, T_n}^{y_n})$
 $\leq \mathcal{W}_1(X_{T_{n+1}-T_n}^{x_n, n}, X_{T_{n+1}-T_n}^{y_n, n}) + \mathcal{W}_1(X_{T_{n+1}-T_n}^{y_n, n}, Y_{T_{n+1}-T_n, T_n}^{y_n})$
 $\leq \underbrace{Ce^{C_1 a_{n+1}^{-2}} e^{-\rho_{n+1}(T_{n+1}-T_n)}}_{\mu_{n+1}} \mathcal{W}_1(X_{T_n}^{x_0}, Y_{T_n}^{x_0}) + \underbrace{Ce^{C_1 a_{n+1}^{-2}} (a_n - a_{n+1})\rho_{n+1}^{-1}}_{\lambda_{n+1}} \mathbb{E}V(Y_{T_n}^{x_0}),$

The convergence is controlled by

$$\lambda_{n+1} := Ce^{C_1 a_{n+1}^{-2}} (a_n - a_{n+1}) \rho_{n+1}^{-1}$$

with

$$\begin{aligned} a_n &\simeq \frac{A}{\sqrt{\log(T_n)}} \\ T_{n+1} &\simeq C n^{\beta+1} \\ a_n - a_{n+1} &\asymp \frac{1}{n \log^{3/2}(n)} \\ e^{C_1 a_{n+1}^{-2}} &\simeq n^{(\beta+1)C_1/A^2} \\ \rho_n^{-1} &= e^{C_2 a_{n+1}^{-2}} &\simeq n^{(\beta+1)C_2/A^2} \\ &\Longrightarrow \lambda_n &\asymp n^{-(1-(\beta+1)(C_1+C_2)/A^2)} \end{aligned}$$

and we choose A large enough such that

$$1 - (\beta + 1)(C_1 + C_2)/A^2 > 0.$$

Then:

$$\begin{split} \mathcal{W}_{1}(Y_{T_{n+1}}^{x_{0}},\nu_{a_{n+1}}) &\leq \mathcal{W}_{1}(Y_{T_{n+1}}^{x_{0}},X_{T_{n+1}}^{x_{0}}) + \mathcal{W}_{1}(X_{T_{n+1}}^{x_{0}},\nu_{a_{n+1}}) \\ &\lesssim CV(x_{0})n^{-(1-(\beta+1)(C_{1}+C_{2})/A^{2})} \\ \mathcal{W}_{1}(Y_{T_{n+1}}^{x_{0}},\nu^{\star}) &\leq \mathcal{W}_{1}(Y_{T_{n+1}}^{x_{0}},X_{T_{n+1}}^{x_{0}}) + \mathcal{W}_{1}(X_{T_{n+1}}^{x_{0}},\nu^{\star}) \lesssim CV(x_{0})a_{n} \end{split}$$

• Ellipticity parameter $a(t) \rightarrow 0 \implies$ we rework the dependency of the ergodic bound in the ellipticity for a general SDE.

- Ellipticity parameter $a(t) \rightarrow 0 \implies$ we rework the dependency of the ergodic bound in the ellipticity for a general SDE.
- We then prove the convergence for the auxiliary "by plateau" process:

$$dX_t = -\sigma\sigma^{\top} \nabla V(X_t) dt + a_{n+1}\sigma(X_t) dW_t + a_{n+1}^2 \Upsilon(X_t) dt, \quad t \in [T_n, T_{n+1}),$$

$$a_n = A \log^{-1/2}(T_n),$$

and obtain ergodic bounds for $\mathcal{W}_1(X_{T_{n+1}}, \nu_{a_{n+1}})$; then

$$\mathcal{W}_1(X_{T_n},\nu^*) \leq \mathcal{W}_1(X_{T_n},\nu_{a_n}) + \mathcal{W}_1(\nu_{a_n},\nu^*) \to 0.$$

- Ellipticity parameter $a(t) \rightarrow 0 \implies$ we rework the dependency of the ergodic bound in the ellipticity for a general SDE.
- We then prove the convergence for the auxiliary "by plateau" process:

$$dX_t = -\sigma\sigma^{\top} \nabla V(X_t) dt + a_{n+1}\sigma(X_t) dW_t + a_{n+1}^2 \Upsilon(X_t) dt, \quad t \in [T_n, T_{n+1}),$$

$$a_n = A \log^{-1/2}(T_n),$$

and obtain ergodic bounds for $\mathcal{W}_1(X_{T_{n+1}}, \nu_{a_{n+1}})$; then

$$\mathcal{W}_1(X_{T_n},\nu^{\star}) \leq \mathcal{W}_1(X_{T_n},\nu_{a_n}) + \mathcal{W}_1(\nu_{a_n},\nu^{\star}) \to 0.$$

• We then use the domino strategy to give bounds on $\mathcal{W}_1(X_{\mathcal{T}_n},Y_{\mathcal{T}_n})$:

$$\mathcal{W}_1(Y_{\mathcal{T}_n},\nu^{\star}) \leq \mathcal{W}_1(Y_{\mathcal{T}_n},X_{\mathcal{T}_n}) + \mathcal{W}_1(X_{\mathcal{T}_n},\nu^{\star}) \to 0.$$

Convergence of the Euler scheme with decreasing steps

Euler-Maruyama scheme

$$\begin{split} \bar{Y}_{\Gamma_{n+1}}^{\mathbf{x_0}} &= \bar{Y}_{\Gamma_n} + \gamma_{n+1} \left(b_{a(\Gamma_n)}(\bar{Y}_{\Gamma_n}^{\mathbf{x_0}}) + \zeta_{n+1}(\bar{Y}_{\Gamma_n}^{\mathbf{x_0}}) \right) + a(\Gamma_n)\sigma(\bar{Y}_{\Gamma_n}^{\mathbf{x_0}})(W_{\Gamma_{n+1}} - W_{\Gamma_n}) \\ \gamma_{n+1} \text{ decreasing to } 0, \quad \sum_n \gamma_n = \infty, \quad \sum_n \gamma_n^2 < \infty, \quad \Gamma_n = \gamma_1 + \dots + \gamma_n, \\ \forall x, \ \mathbb{E}[\zeta_n(x)] = 0 \quad (\text{mini-batch noise}). \end{split}$$

 \implies Same strategy of proof.

Introduction	Convergence of Langevin algorithms ∩≜∩	Langevin for NN	Conclusion
Total variation c	ase		

 $\bullet\,$ Proofs are similar with \mathcal{W}_1 distance.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Total variation	case		

- $\bullet\,$ Proofs are similar with \mathcal{W}_1 distance.
- Main difficulty: error bounds in short time. Indeed:

$$\begin{aligned} |f(X_t) - f(Y_t)| &\leq [f]_{\text{Lip}} |X_t - Y_t| & \text{if } f \text{ is Lipschitz.} \\ |f(X_t) - f(Y_t)| &\leq ??? & \text{if } f \text{ is bounded.} \end{aligned}$$

 \bullet We investigate d_{TV} bounds in short time for general SDEs.

Introduction	Convergence of Langevin algorithms ∩≜∩	Langevin for NN	Conclusion
Total variation	case		

- \bullet Proofs are similar with \mathcal{W}_1 distance.
- Main difficulty: error bounds in short time. Indeed:

$$\begin{split} |f(X_t) - f(Y_t)| &\leq [f]_{\mathsf{Lip}} |X_t - Y_t| & \text{if } f \text{ is Lipschitz.} \\ |f(X_t) - f(Y_t)| &\leq ??? & \text{if } f \text{ is bounded.} \end{split}$$

• We investigate d_{TV} bounds in short time for general SDEs:

For
$$dX_t = b_1(X_t)dt + \sigma_1(X_t)dW_t$$
, $dY_t = b_2(Y_t)dt + \sigma_2(Y_t)dW_t$,
 $X_0 = Y_0$, $\sigma_1(X_0) = \sigma_2(Y_0)$,

then

$$\mathsf{d}_{\mathsf{TV}}(X_t,Y_t) \leq C t^{1/2} e^{c\sqrt{\log(1/t)}}.$$

• Pierre Bras, Gilles Pagès, and Fabien Panloup. Total variation distance between two diffusions in small time with unbounded drift: application to the Euler-Maruyama scheme.. Electron. J. Probab., 27:1–19, 2022.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	○●○	000	O

These result uses:

Theorem

Let Z_1 and Z_2 be two random vectors admitting densities p_1 and p_2 . Then

$$\mathsf{d}_{\mathsf{TV}}(Z_1, Z_2) \le C_{d,r} \mathcal{W}_1(Z_1, Z_2)^{2r/(2r+1)} \left(\int_{\mathbb{R}^d} \left(\|\nabla^{2r} p_1(\xi)\| + \|\nabla^{2r} p_2(\xi)\| \right) d\xi \right)^{1/(2r+1)}$$

Convergence of adaptive Langevin-Simulated Annealing algorithms

- \bullet Convergence of Langevin-Simulated Annealing algorithms for \mathcal{W}_1 and d_{TV}
- Convergence rates of Gibbs measures with degenerate minimum

,

• To get the convergence of Langevin algorithms, we need the convergence of

$$\begin{aligned} \mathcal{D}(\nu_a,\nu^*), & a \to 0, \\ \nu_a(x) \propto \exp\left(-2V(x)/a^2\right) \\ \nu^* &= \lim_{a \to 0} \nu_a. \end{aligned}$$

• It is known to be of order *a* if $\operatorname{argmin}(V)$ is finite and $\nabla^2 V(x_i^{\star}) > 0$ for all $x_i^{\star} \in \operatorname{argmin}(V)$ (Hwang, 1980, 1981). Then

$$\nu^{\star} = \left(\sum_{i} \det(\nabla^{2} V(x_{i}^{\star}))^{-1/2}\right)^{-1} \sum_{i} \det(\nabla^{2} V(x_{i}^{\star}))^{-1/2} \delta_{x_{i}^{\star}}.$$

• To get the convergence of Langevin algorithms, we need the convergence of

$$\begin{aligned} \mathcal{D}(\nu_a,\nu^*), & a \to 0, \\ \nu_a(x) \propto \exp\left(-2V(x)/a^2\right) \\ \nu^* &= \lim_{a \to 0} \nu_a. \end{aligned}$$

• It is known to be of order *a* if $\operatorname{argmin}(V)$ is finite and $\nabla^2 V(x_i^{\star}) > 0$ for all $x_i^{\star} \in \operatorname{argmin}(V)$ (Hwang, 1980, 1981). Then

$$\nu^{\star} = \left(\sum_{i} \det(\nabla^{2} V(x_{i}^{\star}))^{-1/2}\right)^{-1} \sum_{i} \det(\nabla^{2} V(x_{i}^{\star}))^{-1/2} \delta_{x_{i}^{\star}}.$$

- We investigate the case where $\operatorname{argmin}(V)$ is finite with **degenerate minimum**.
- This happens in practice when training over-parametrized neural networks (Sagun, Bottou, and LeCun, 2016):

Figure: Distribution of the eigenvalues of the Hessian matrix at the end of training of a neural network on the MNIST dataset.

OOOOO	uction Convergence of Langevin algorithms Langevin for NN 000 000 000 0	Conclusion
	Considering recursively the spaces of cancellation of $ abla^{2k}V$, we obtain:	
J	Theorem	
	Assume that $\operatorname{argmin}(V) = \{x^{\star}\}$. Define (F_k) recursively as	
	$F_0 = \mathbb{R}^d, \ F_k = \{h \in F_{k-1}: \ \forall h' \in F_{k-1}, \ \nabla^{2k} V(x^*) \cdot h \otimes h'^{\otimes 2k-1} = 0\}$	
	and E_k the orthogonal complement of F_k in F_{k-1} . Let B a basis adapted to $\mathbb{R}^d = E_1 \oplus \cdots \oplus E_p$ and $\alpha_i = 1/(2j)$ on the subspace E_j , then if $X \sim \nu_a$:	
	$\left(\frac{1}{a^{2\alpha_1}},\ldots,\frac{1}{a^{2\alpha_d}}\right)*(B^{-1}\cdot(X_{a^2}-x^\star))\to X \text{ as } a\to 0, \text{ in law},$	
	where X has a density proportional to $e^{-g(x)}$ with	
	$g(x) = \sum_{k=2}^{2p} \frac{1}{k!} \sum_{\substack{i_1,\ldots,i_p \in \{0,\ldots,k\}\\i_1+\cdots+i_p=k\\i_2+\cdots+i_p=1}} {k \choose i_1,\ldots,i_p} \nabla^k V(x^*) \cdot \rho_{E_1} (B \cdot x)^{\otimes i_1} \otimes \cdots \otimes \rho_{E_p} (B \cdot x)^{\otimes i_1}$	¢ <i>i</i> _₽ .
	2 2p	

Introd 00000	uction Convergence of Langevin algorithms Langevin for NN 00 00● 000 0	Conclusion
	Considering recursively the spaces of cancellation of $ abla^{2k} V$, we obtain:	
	Theorem	
	Assume that $\operatorname{argmin}(V) = \{x^{\star}\}$. Define (F_k) recursively as	
	$F_0 = \mathbb{R}^d, \ F_k = \{h \in F_{k-1}: \ \forall h' \in F_{k-1}, \ \nabla^{2k} V(x^\star) \cdot h \otimes h'^{\otimes 2k-1} = 0\}$	
	and E_k the orthogonal complement of F_k in F_{k-1} . Let B a basis adapted to $\mathbb{R}^d = E_1 \oplus \cdots \oplus E_p$ and $\alpha_i = 1/(2j)$ on the subspace E_j , then if $X \sim \nu_a$:	
	$\left(\frac{1}{a^{2\alpha_1}},\ldots,\frac{1}{a^{2\alpha_d}}\right)*(B^{-1}\cdot(X_{a^2}-x^\star))\to X \text{ as } a\to 0, \text{ in law},$	
	where X has a density proportional to $e^{-g(x)}$ with	
	$g(x) = \sum_{k=2}^{2p} \frac{1}{k!} \sum_{\substack{i_1,\ldots,i_p \in \{0,\ldots,k\}\\i_1+\cdots+i_p=k}} {\binom{k}{i_1,\ldots,i_p}} \nabla^k V(x^*) \cdot P_{\mathcal{E}_1}(B \cdot x)^{\otimes i_1} \otimes \cdots \otimes P_{\mathcal{E}_p}(B \cdot x)^{\otimes i_1}}$	ⁱ ^p .
	$\frac{1}{2} + \dots + \frac{1}{2p} = 1$	

 \implies For *j* such that 2*j* is the maximum order of degeneracy of $\nabla^{2j}V(x^*)$, then $\mathcal{D}(\nu_a, \nu^*)$ is of order $a^{1/j}$.

Pierre Bras. Convergence rates of Gibbs measures with degenerate minimum. Bernoulli, 28(4):2431 – 2458, 2022, (extension of (Athreya and Hwang, 2010)).

Adaptive Langevin algorithms for Neural Networks

- Langevin versus non-Langevin for very deep learning
- Langevin algorithms for Markovian Neural Networks and Deep Stochastic control

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusior
	(11)	(1, 1)	

Outline

Adaptive Langevin algorithms for Neural Networks

- Langevin versus non-Langevin for very deep learning
- Langevin algorithms for Markovian Neural Networks and Deep Stochastic control

Introduction

Preconditioned Langevin Gradient Descent

Preconditioned Langevin Gradient Descent (Li et al., 2016)

For some preconditioner rule P_{n+1} depending on the previous updates of the gradient $(g_n \simeq \nabla V(\theta_n))$ and $\sigma > 0$:

Preconditioned Gradient Descent: $\theta_{n+1} = \theta_n - \gamma_{n+1}P_{n+1} \cdot g_{n+1}$,

Preconditioned Langevin: $\theta_{n+1} = \theta_n - \gamma_{n+1}P_{n+1} \cdot g_{n+1} + \sigma_{\sqrt{\gamma_{n+1}}}\mathcal{N}(0, P_{n+1})$

Preconditioned Langevin Gradient Descent

Preconditioned Langevin Gradient Descent (Li et al., 2016)

For some preconditioner rule P_{n+1} depending on the previous updates of the gradient $(g_n \simeq \nabla V(\theta_n))$ and $\sigma > 0$:

Preconditioned Gradient Descent: $\theta_{n+1} = \theta_n - \gamma_{n+1}P_{n+1} \cdot g_{n+1}$,

Preconditioned Langevin: $\theta_{n+1} = \theta_n - \gamma_{n+1}P_{n+1} \cdot g_{n+1} + \sigma \sqrt{\gamma_{n+1}} \mathcal{N}(0, P_{n+1})$

- Per-dimension adaptive step size.
- Adding noise is known to improve the learning in some cases. (Neelakantan et al., 2015; Anirudh Bhardwaj, 2019; Gulcehre et al., 2016)

Introduction

Langevin for NN

Examples of gradient algorithms

Algorithm Adam (Kingma and Ba, 2015)

$$\begin{split} & \mathsf{Parameters:} \ \beta_{1}, \beta_{2}, \lambda > 0 \\ & \mathcal{M}_{n+1} = \beta_{1}\mathcal{M}_{n} + (1 - \beta_{1})g_{n+1} \\ & \mathsf{MS}_{n+1} = \beta_{2}\,\mathsf{MS}_{n} + (1 - \beta_{2})g_{n+1} \odot g_{n+1} \\ & \widehat{\mathcal{M}}_{n+1} = \mathcal{M}_{n+1}/(1 - \beta_{1}^{n+1}) \\ & \widehat{\mathsf{MS}}_{n+1} = \mathsf{MS}_{n+1} / (1 - \beta_{2}^{n+1}) \\ & \mathcal{P}_{n+1} = \mathsf{diag}\,\big(\mathbbm{1} \oslash \big(\lambda\mathbbm{1} + \sqrt{\widehat{\mathsf{MS}}_{n+1}}\big)\big) \\ & \theta_{n+1} = \theta_{n} - \gamma_{n+1}\mathcal{P}_{n+1} \cdot \widehat{\mathcal{M}}_{n+1}. \end{split}$$

Algorithm RMSprop (Tieleman and Hinton, 2012)

 $\begin{array}{l} \text{Parameters: } \alpha, \lambda > 0 \\ \text{MS}_{n+1} = \alpha \, \text{MS}_n + (1 - \alpha) g_{n+1} \odot g_{n+1} \\ P_{n+1} = \text{diag} \left(\mathbbm{1} \oslash \left(\lambda \mathbbm{1} + \sqrt{\text{MS}_{n+1}} \right) \right) \\ \theta_{n+1} = \theta_n - \gamma_{n+1} P_{n+1} \cdot g_{n+1} \end{array}$

Algorithm Adadelta (Zeiler, 2012)

$$\begin{split} & \mathsf{Parameters:} \ \beta_1, \beta_2, \lambda > 0 \\ & \mathsf{MS}_{n+1} = \beta_1 \ \mathsf{MS}_n + (1 - \beta_1) g_{n+1} \odot g_{n+1} \\ & \mathcal{P}_{n+1} = \text{diag} \left((\lambda \mathbb{1} + \widehat{\mathsf{MS}}_n) \oslash \left(\lambda \mathbb{1} + \sqrt{\widehat{\mathsf{MS}}_n} \right) \right) \\ & \theta_{n+1} = \theta_n - \gamma_{n+1} P_{n+1} \cdot g_{n+1}. \\ & \widehat{\mathsf{MS}}_{n+1} = \beta_2 \ \mathsf{MS}_n + (1 - \beta_2) (\theta_{n+1} - \theta_n) \odot (\theta_{n+1} - \theta_n). \end{split}$$

- Very deep neural networks are crucial, in particular in image classification (He et al., 2016).
- However much more difficult to train: much more "non-linear", local traps, vanishing gradients (Dauphin et al., 2014).
- (Neelakantan et al., 2015): hints that noisy optimizers bring more improvements.

Figure: Architecture of the VGG-16 network for an input image of size 224×224 .

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
0000	000	○●○	O

We compare Preconditioned Langevin optimizers with their non-Langevin counterparts while increasing the depth of the networkon the MNIST, CIFAR-10 and CIFAR-100 datasets.

Pierre Bras. Langevin algorithms for very deep Neural Networks with application to image classification. Procedia Computer Science, 222:303 – 310, 2023.

Figure: MNIST image dataset

Figure: CIFAR-10 image dataset

Figure: Training of neural networks of various depths on the MNIST dataset using Langevin algorithms compared with their non-langevin counterparts. (a): 3 hidden layers, (b): 20 hidden layers, (c): 30 hidden layers, (d): 40 hidden layers.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Layer Langevin A	Algorithm		

Idea: The deepest layers of the network bear the most non-linearities \implies are more subject to Langevin optimization

Layer Langevin Algorithm

$$\theta_{n+1}^{(i)} = \theta_n^{(i)} - \gamma_{n+1} [P_{n+1} \cdot g_{n+1}]^{(i)} + \mathbf{1}_{i \in \mathcal{J}} \sigma_{\sqrt{\gamma_{n+1}}} [\mathcal{N}(0, P_{n+1})]^{(i)}$$

where \mathcal{J} : subset of weight indices; P_n : preconditioner.

We choose \mathcal{J} to be the first k layers.

• Hypoelliptic Langevin diffusion (Hu and Spiliopoulos, 2017)

Langevin for NN

Conclusion

An example of Layer Langevin optimization

 $\mathsf{Figure:}$ Layer Langevin comparison on a dense neural network with 30 hidden layers on the MNIST dataset.

- Typical architecture in image recognition: Succession of convolutional layers with non-linearities (ReLU) (Simonyan and Zisserman, 2015)
- Residual connections: each layer behaves in part like the identity layer to pass the information through the successive layers (He et al., 2016; Huang et al., 2017).

Figure: ResNet elementary block

Langevin for NN Conclusion Conclusico Conclusico Conclusico Conclusico Conclusico Conclu

Pierre BRAS Adap

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Outline			

Adaptive Langevin algorithms for Neural Networks

• Langevin versus non-Langevin for very deep learning

• Langevin algorithms for Markovian Neural Networks and Deep Stochastic control

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	000	○○●	O

Stochastic control

$$\min_{u} J(u) := \mathbb{E}\left[\int_{0}^{T} G(Y_t) dt + F(Y_T)\right],$$

$$dY_t = b(Y_t, u_t) dt + \sigma(Y_t, u_t) dW_t, \ t \in [0, T],$$

G: path-dependent return, F: final return, u_t : control, Y_t : trajectory.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
D	and the second		

Discretization and numerical scheme

Euler-Maruyama scheme

$$\begin{split} \min_{\theta} \bar{J}(\bar{u}_{\theta}) &:= \mathbb{E}\Big[\sum_{k=0}^{N-1} (t_{k+1} - t_k) G(\bar{Y}_{t_{k+1}}^{\theta}) + F(\bar{Y}_{t_N}^{\theta})\Big], \\ \bar{Y}_{t_{k+1}}^{\theta} &= \bar{Y}_{t_k}^{\theta} + (t_{k+1} - t_k) b\big(\bar{Y}_{t_k}^{\theta}, \bar{u}_{k,\theta}(\bar{Y}_{t_k}^{\theta})\big) + \sqrt{t_{k+1} - t_k} \sigma\big(\bar{Y}_{t_k}^{\theta}, \bar{u}_{k,\theta}(\bar{Y}_{t_k}^{\theta})\big) \xi_{k+1}, \\ \xi_k \sim \mathcal{N}(0, I_{d_2}) \text{ i.i.d.} \end{split}$$

- Time discretization of [0, T]: $t_k := kT/N, \ k \in \{0, \dots, N\}, \quad h := T/N.$
- **Control** u with **parameter** θ using either one time-dependant neural network either N distinct neural networks: $u_{t_k} = \bar{u}_{\theta}(t_k, Y_{t_k})$ or $u_{t_k} = \bar{u}_{\theta k}(Y_{t_k})$
| Introduction | Convergence of Langevin algorithms | Langevin for NN | Conclusion |
|--------------|------------------------------------|-----------------|------------|
| | | | |

Discretization and numerical scheme

Euler-Maruyama scheme

$$\begin{split} \min_{\theta} \bar{J}(\bar{u}_{\theta}) &:= \mathbb{E}\Big[\sum_{k=0}^{N-1} (t_{k+1} - t_k) G(\bar{Y}_{t_{k+1}}^{\theta}) + F(\bar{Y}_{t_N}^{\theta})\Big], \\ \bar{Y}_{t_{k+1}}^{\theta} &= \bar{Y}_{t_k}^{\theta} + (t_{k+1} - t_k) b(\bar{Y}_{t_k}^{\theta}, \bar{u}_{k,\theta}(\bar{Y}_{t_k}^{\theta})) + \sqrt{t_{k+1} - t_k} \sigma(\bar{Y}_{t_k}^{\theta}, \bar{u}_{k,\theta}(\bar{Y}_{t_k}^{\theta})) \xi_{k+1}, \\ \xi_k \sim \mathcal{N}(0, I_{d_2}) \text{ i.i.d.} \end{split}$$

- Time discretization of [0, T]: $t_k := kT/N, k \in \{0, \dots, N\}, h := T/N.$
- **Control** u with **parameter** θ using either one time-dependant neural network either N distinct neural networks: $u_{t_k} = \bar{u}_{\theta}(t_k, Y_{t_k})$ or $u_{t_k} = \bar{u}_{\theta k}(Y_{t_k})$
- We refer to (Gobet and Munos, 2005; Han and E, 2016).
- The gradient is computed by recursively tracking the dependency of along the trajectory (Giles and Glasserman, 2005; Giles, 2007).
- Pierre Bras and Gilles Pagès. Langevin algorithms for Markovian Neural Networks and Deep Stochastic control. IJCNN23 Proceedings, 2023.

Figure: Markovian Neural Network with one control.

Figure: Markovian neural network with one control for every time step. Layer Langevin algorithms can be used in this case.

Fish biomass $Y_t \in \mathbb{R}^{d_1}$ with:

- Inter-species interaction κY_t
- Fishing following imposed quotas ut
- Objective: keep Y_t close to an ideal state \mathcal{Y}_t .

Figure: Source: Unsplash

$$dY_t = Y_t * ((r - u_t - \kappa Y_t)dt + \eta dW_t)$$
$$J(u) = \mathbb{E}\left[\int_0^T (|Y_t - \mathcal{Y}_t|^2 - \langle \alpha, u_t \rangle)dt + \beta [u]^{0,T}\right]$$

We aim to replicate some payoff Z defined on some portfolio S_t by trading some of the assets with transaction costs; the control u_t is the amount of held assets. The objective is

Figure: Source: Unsplash

where ν is a convex risk measure.

$$J(u) = \nu \left(-Z + \sum_{k=0}^{N-1} \langle u_{t_k}, S_{t_{k+1}} - S_{t_k} \rangle - \sum_{k=0}^{N} \langle c_{tr}, S_{t_k} * |u_{t_k} - u_{t_{k-1}}| \rangle \right)$$

• We consider a multi-dimensional Heston model $(1 \le i \le d'_1)$:

$$\begin{split} dS_t^{1,i} &= \sqrt{V_t^i} S_t^{1,i} dB_t^i, \\ dV_t^i &= a^i (b^i - V_t^i) dt + \eta^i \sqrt{V_t^i} dW_t^i, \quad \langle W^i, B^i \rangle_t = \rho t. \end{split}$$

• V is not tradable directly but through swap options:

$$S_t^{2,i} := \mathbb{E}\left[\int_0^T V_s^i ds \middle| \mathcal{F}_t\right] = \int_0^t V_s^i ds + L^i(t, V_t^i),$$
$$L^i(t, v) := \frac{v - b^i}{a^i} \left(1 - e^{a^i(T-t)}\right) + b^i(T-t).$$

• Call payoff:

$$Z = \sum_{i=1}^{d'_1} \left(S_T^{1,i} - K^i \right)_+$$

Figure: Comparison of algorithms with N = 30, 50, 50 respectively

Table: Best per	formance
-----------------	----------

	Adam, <i>N</i> = 30	Adam, <i>N</i> = 50	Adadelta, $N = 50$
Vanilla	0.4448	0.6355	0.4671
Langevin	0.4306	0.4182	0.3773

Figure: Training of the deep hedging problem with multiple controls with N = 10

Table: Be	est pei	forman	ce
-----------	---------	--------	----

	Adam	RMSprop	Adadelta
Vanilla	0.7278	0.5618	1.2900
Langevin	0.6626	0.4441	0.9250
Layer Langevin 30%	0.6004	0.4102	0.8554
Layer Langevin 90%	0.6377	-	-

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Outline			

Conclusion and perspectives

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Conclusion			

• A wide range of problems can be tackled with optimization methods and gradient descent, while neural networks help to approximate the solution function.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Conclusion			

- A wide range of problems can be tackled with optimization methods and gradient descent, while neural networks help to approximate the solution function.
- We prove the convergence of Langevin algorithms with multiplicative noise and give theoretical guarantees, whereas these algorithms has been used by practitioners without theory.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Conclusion			

- A wide range of problems can be tackled with optimization methods and gradient descent, while neural networks help to approximate the solution function.
- We prove the convergence of Langevin algorithms with multiplicative noise and give theoretical guarantees, whereas these algorithms has been used by practitioners without theory.
- We give theoretical founding including degenerate minimum cases.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Conclusion			

- A wide range of problems can be tackled with optimization methods and gradient descent, while neural networks help to approximate the solution function.
- We prove the convergence of Langevin algorithms with multiplicative noise and give theoretical guarantees, whereas these algorithms has been used by practitioners without theory.
- We give theoretical founding including degenerate minimum cases.
- We prove the interest of Langevin or Layer Langevin algorithms for various problems, involving very deep learning.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
00000	000	000	•

Thank you for your attention !

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Citations I			

- C. Anirudh Bhardwaj. Adaptively Preconditioned Stochastic Gradient Langevin Dynamics. arXiv e-prints, art. arXiv:1906.04324, June 2019.
- K. B. Athreya and C.-R. Hwang. Gibbs measures asymptotics. Sankhya A, 72(1):191-207, 2010. ISSN 0976-836X. doi: 10.1007/s13171-010-0006-5. URL https://doi.org/10.1007/s13171-010-0006-5.
- H. Buehler, L. Gonon, J. Teichmann, and B. Wood. Deep hedging. Quant. Finance, 19(8):1271-1291, 2019. ISSN 1469-7688. doi: 10.1080/14697688.2019.1571683. URL https://doi.org/10.1080/14697688.2019.1571683.
- T.-S. Chiang, C.-R. Hwang, and S. J. Sheu. Diffusion for global optimization in Rⁿ. SIAM J. Control Optim., 25(3):737-753, 1987. ISSN 0363-0129. doi: 10.1137/0325042. URL https://doi.org/10.1137/0325042.
- G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems, 2 (4):303-314, 1989. ISSN 0932-4194. doi: 10.1007/BF02551274. URL https://doi.org/10.1007/BF02551274.
- Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and Attacking the Saddle Point Problem in High-Dimensional Non-Convex Optimization. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS'14, page 2933-2941, Cambridge, MA, USA, 2014. MIT Press.
- A. Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory Related Fields, 166 (3-4):851-886, 2016. ISSN 0178-8051. doi: 10.1007/s00440-015-0673-1. URL https://doi.org/10.1007/s00440-015-0673-1.
- S. B. Gelfand and S. K. Mitter. Recursive stochastic algorithms for global optimization in R^d. SIAM J. Control Optim., 29(5):999-1018, 1991. ISSN 0363-0129. doi: 10.1137/0329055. URL https://doi.org/10.1137/0329055.
- M. B. Giles. Monte Carlo evaluation of sensitivities in computational finance. Technical Report NA07/12, Oxford University Computing Laboratory, 2007.

Citations II

- M. B. Giles and P. Glasserman. Smoking adjoints: fast evaluation of Greeks in Monte Carlo calculations. Technical Report NA05/15, Oxford University Computing Laboratory, 2005.
- E. Gobet and R. Munos. Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control. SIAM J. Control Optim., 43(5):1676-1713, 2005. ISSN 0363-0129. doi: 10.1137/S0363012902419059. URL https://doi.org/10.1137/S0363012902419059.
- C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio. Noisy activation functions. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML'16, page 3059-3068. JMLR.org, 2016.
- J. Han and W. E. Deep Learning Approximation for Stochastic Control Problems. Deep Reinforcement Learning Workshop, NIPS (2016), Nov. 2016.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016. doi: 10.1109/CVPR.2016.90.
- W. Hu and K. Spiliopoulos. Hypoelliptic multiscale Langevin diffusions: large deviations, invariant measures and small mass asymptotics. *Electronic Journal of Probability*, 22(none):1 – 38, 2017. doi: 10.1214/17-EJP72. URL https://doi.org/10.1214/17-EJP72.
- G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261-2269, 2017. doi: 10.1109/CVPR.2017.243.
- C.-R. Hwang. Laplace's method revisited: weak convergence of probability measures. Ann. Probab., 8 (6):1177-1182, 1980. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198012)8:6<1177:LMRWCO>2.0.CO;2-1&origin=MSN.
- C. R. Hwang. A generalization of Laplace's method. Proc. Amer. Math. Soc., 82(3):446-451, 1981. ISSN 0002-9939. doi: 10.2307/2043958. URL https://doi.org/10.2307/2043958.
- P. Jorion. Value at Risk: A New Benchmark for Measuring Derivative Risk. Irwin Professional Publishing, 1996.

Introduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
Citations III			

- D. P., Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
- D. Lamberton and G. Pagès. Recursive computation of the invariant distribution of a diffusion. Bernoulli, 8(3):367-405, 2002. ISSN 1350-7265. doi: 10.1142/S0219493703000838. URL https://doi.org/10.1142/S0219493703000838.
- D. Lamberton and G. Pagès. Recursive computation of the invariant distribution of a diffusion: the case of a weakly mean reverting drift. Stoch. Dyn., 3(4):435-451, 2003. ISSN 0219-4937. doi: 10.1142/S0219493703000838. URL https://doi.org/10.1142/S0219493703000838.
- M. Laurière, G. Pagès, and O. Pironneau. Performance of a Markovian Neural Network versus dynamic programming on a fishing control problem. *Probability, Uncertainty and Quantitative Risk*, pages -, 2023. ISSN 2095-9672. doi: 10.3934/puqr.2023006. URL /article/id/63c741a4b5351f4889aff727.
- V. Lemaire. Estimation récursive de la mesure invariante d'un processus de diffusion. Theses, Université de Marne la Vallée, Dec. 2005. URL https://tel.archives-ouvertes.fr/tel-00011281.
- C. Li, C. Chen, D. Carlson, and L. Carin. Preconditioned stochastic gradient langevin dynamics for deep neural networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI'16, page 1788-1794. AAAI Press, 2016.
- L. Miclo. Recuit simulé sur Rⁿ. Étude de l'évolution de l'énergie libre. Ann. Inst. H. Poincaré Probab. Statist., 28(2):235-266, 1992. ISSN 0246-0203. URL http://www.numdam.org/item?id=AIHPB_1992_28_2235_0.
- P. Monmarché, N. Fournier, and C. Tardif. Simulated annealing in R^d with slowly growing potentials. Stochastic Process. Appl., 131:276-291, 2021. ISSN 0304-4149. doi: 10.1016/j.spa.2020.09.014. URL https://doi.org/10.1016/j.spa.2020.09.014.
- A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and J. Martens. Adding Gradient Noise Improves Learning for Very Deep Networks. arXiv e-prints, art. arXiv:1511.06807, Nov. 2015.

troduction	Convergence of Langevin algorithms	Langevin for NN	Conclusion
വന .	Ŭ Ŭ Ŭ	റററ്	i 🛆 .

Citations IV

- G. Pagès and F. Panloup. Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds. The Annals of Applied Probability, 33(1):726 - 779, 2023. doi: 10.1214/22-AAP1828. URL https://doi.org/10.1214/22-AAP1828.
- H. Robbins and S. Morro. A stochastic approximation method. Ann. Math. Statistics, 22:400-407, 1951. ISSN 0003-4851. doi: 10.1214/aoms/1177729586. URL https://doi.org/10.1214/aoms/1177729586.
- H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications. In Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971), pages 233-257. Academic Press. New York, 1971.
- L. Sagun, L. Bottou, and Y. LeCun. Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond. arXiv e-prints, art. arXiv:1611.07476, 2016.
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
- T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 2012.
- S. Uryasev and R. T. Rockafellar. Conditional value-at-risk: optimization approach. In Stochastic optimization: algorithms and applications (Gainesville, FL, 2000), volume 54 of Appl. Optim., pages 411-435. Kluwer Acad. Publ., Dordrecht, 2001. doi: 10.1007/978-1-4757-6594-6_17. URL https://doi.org/10.1007/978-1-4757-6594-6_17.
- F.-Y. Wang. Exponential contraction in Wasserstein distances for diffusion semigroups with negative curvature. *Potential Anal.*, 53(3):1123-1144, 2020. ISSN 0926-2601. doi: 10.1007/s11118-019-09800-z. URL https://doi.org/10.1007/s11118-019-09800-z.
- M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In Proceedings of the 28th International Conference on International Conference on Machine Learning. ICML'11, page 681-688. Omnipress. 2011. ISBN 9781450306195.
- M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv e-prints, art. arXiv:1212.5701, Dec. 2012.