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Introduction - Optimization

Optimization problem

Let V : RY — R be C!, coercive (i.e. V(x) — 400 as |x| — oo) and let
argmin(V) := {x € RY: V(x) = mings V} and V* := min V.

Objective : find argmin(V).

e Example : Regression as an optimization problem

—{d.: x€ Rd} family of functions ®y : R SR parametrized by x € R? (e.g. P«
is a neural function).

—for1 <i<N, (uj,v;) € RY x R : data associated to a regression problem

— We want to find x such that for all i, ®,(u;) =~ v;

N

1
— Find min — &, (u;) — vi)?2 =: min V().
min 5 @) = ) =i min V()
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Introduction - Gradient descent

e Gradient descent algorithm : compute the gradient and "go down" the gradient with
decreasing step sequence (vx):

X0 ERd

Xp+1 = Xn — ’Yn+1VV(Xn).

e The continuous version is dXs = —VV/(X;)ds.

x0 X* X0 Xk

e Problem : x, can be "trapped" !
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Introduction - Langevin Equation

e We add a white noise to x,, hoping to escape traps :

Xp+1 = Xn — 'Yn+1VV(Xn) ++/ "‘/'n+1i7fn+17 §n+1 ~ N(O, Id)-

= called SGLD algorithms (Stochastic Gradient Langevin Dynamics)
e The continuous version becomes:

dXs = =V V(Xs)ds +odWs (Langevin Equation)
where (Ws) is a Brownian motion and o > 0.

e Assuming that e=2V/9" ¢ [1(R9), it is invariant measure is the Gibbs measure

Vo (x)dx = Cgefz(v(x)*v*)/o2 dx

-1
C, — (/ e—2(V(x)—V*)/g—2dx) .
Rd

e Exogenous noise odW; added to escape local minima (’traps’) and explore the state
space.

e For small o, vs is concentrated around argmin(V):

Solve the Langevin equation = approximation of v, = approximation of
argmin(V).
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Introduction - Simulated Annealing algorithms

o We have vz — argmin(V) in law.
o—0

e One possibility : solve the Langevin equation for small o
e Another possibility : make o — 0 while iterating the algorithm :

Xp+1 = Xn — 'Yn+1vv(Xn) + a(”/l + -+ "rn+1)0'\/ Yn+1€n+1s  En+1 ~ N(O: Id)7

where a(t) is decreasing and a(t) " 0.
—

The continuous version becomes :

Langevin-Simulated Annealing Equation

dX: = =V V(Xi)dt + a(t)odWs,

o The 'instantaneous’ invariant measure vy, (dx) oc exp (—2V/(x)/(a*(t)o?))
converges itself to argmin(V)

o Schedule a(t) = Alog—1/2(t) then X; =2 argmin(V) in law [Chiang-Hwang
o0
1987], [Miclo 1992]
o [Gelfand-Mitter 1991] proves the convergence of the algorithm (x,).
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Multiplicative noise

o Noise 0 > 0 = isotropic, homogeneous noise = not adapted to V
o Instead : o(Xt) is a matrix depending on the position

o In Machine Learning literature, a good choice is o(x)o(x)T ~ (V2V(x))~! as in
the Newton algorithm.

d
dY: = —(o0 T VV)(Yo)dt + a(t)o(Ye)dW: + | a°(t) | D> di(oa T)(Ye); dt

J= 1<i<d

correction term T (Y;)

a(t)= 2

- log(t)’ )

o Correction term so that v,y o exp (—2V/(x)/a?(t)) is still the "instantaneous"
invariant measure
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Objectives and assumptions

o Prove the convergence in of Y; and Y; to v* (supported by argmin(V))

o We use the L'-Wasserstein distance:
Wi (71, m2) = sup {/ f(x)m1(dx) —/ f(x)ma(dx): f:RY >R, [flup = 1} .
R Rd

and we show that Wi ([Y:], v*) — 0 and Wy ([Y4], v*) — 0.
o We have
Wi(Ye,v*) < Wa(Ye, Vo)) + Wi (Va(r), v°)
The convergence is limited by the slowness of a(t) as
Wi (Va(e), v*) < a(t) < log=1/2(t). In fact we also prove

Wa(Y®, 1) < Camax(1 + o, V(X0))t ™
Wl(\_/tmv’/a(t)) < Camax(1 + [xol, VZ(XO))t_a

for every a < 1.

o Assumptions:
@ V is strongly convex outside some compact set
@ o is bounded and elliptic: oo > ooly, oo > 0.
© VV is Lipschitz
@ Decreasing steps (7,) for the Euler scheme, with 3=, v, = 0o, 3,72 < oo,
Mhi=vy1+-+7-
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Domino strategy

o [Pages-Panloup 2020] proves the convergence of the Euler scheme of a general
SDE dX: = b(X:)dt + o(X¢)dW to the invariant measure 7* for Whi:

Wi (Xe, 7%) — 0.
@ Domino strategy: for f 1-Lipschitz (P, P: kernels of X, )_<):
Wi(KE, X)) < [BF(RE,) — BFOXE)
= [Py 0+ 0 Py F(x) — Pr, F()

=D Pyo-0Py_ o(Py —Py)oPr,_r,f(x)
k=1

n
SZ|P"/1O”'OP'Yk—lO(P'Yk_P’Yk)OPrn*rkf(X){’

A\ 4

O For large k = Error in small time = use bounds for || X} — X}||,
@ For small k = Ergodicity contraction properties using the convexity of V outside
a compact set and the ellipticity of o [Wang 2020]:

Yt > to, Wi(X[, X)) < Ce™ ™ |x — y]
= Wi(X[,7") < Ce” PH(1 + |x]).
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Contraction property with ellipticity parameter a

e Problems before applying the domino strategy: non-homogeneous Markov chain +
the ellipticity parameter fades away in a(t).
—> What is the dependency of the constants C and p in the ellipticity ?

Consider dX; = b(X:)dt + ac(X¢)dW;, a > 0 with invariant measure v, and with

a2
¥x,y € B0, R)%, (b(x) = b(y), x = y) + T llo(x) = o(n)I* < —alx - y[*.

Then

Wl(Xg(le%/) S CeC1/32|X = y\e’pat, Pa = 67C2/32

Wi(XZ,va) < CeC/? e=Pat Ry, — x|.
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"By plateaux" process

We first consider the plateau SDE:

dX = —00 | VV(Xe)dt + anp10(Xe)dWs + a2, 1 T(Xe)dt,  t € [Ta, Thi1),
an = Alog™'/2(T,)

We apply the contraction property on every plateau:

2 _ —
Wi(XT, g Vanys [X7,) < Ce@/omae™PonaTod =g [l — X7, | |X7,]

We integrate over the law of X1, giving
X 2 _ _
Wl([XT?H].]? V«Sn+1) < Cecl/a"Jrl e Pt (Tnia Tn)Wl([X')I('(:]v Van+1)
< Cecl/a§+1 e Pant1 (Taa—Ta) (Wl([x;‘;]s Vay) + Wi(va,, Vapi1 )) .
And we iterate:

W1([X;‘,’,H], V3n+1) < pnga Wi (Vays Van+1) + Mn+1#nW1(Va,._17 Va,) + -
+ fnt1 e M1W1(Va07Va1) + g1 lel(dxovyao)v

fin 1= CeC1/# e Pan(Tn=Tn1),
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e On the other side, we give bounds for the Gibbs measures:

W1 (Vays Vapsa) and  Wi(va,,v*).

Lemma: Acceptance-rejection Wasserstein bounds

Let 1 and v be two probability distributions on RY with densities f and g respectively
with finite moments of order p. Assume that there exists M > 1 such that f < Mg.
Then

1 ~
Walp, v} SEIX = VP = —E|X - XP7,

where X and X ~ u, Y ~vand X, X and Y are mutually independent.

Proof: Let X ~ pu, Y ~ v, U ~U([0,1]) independent and
X' = YL{U < £(Y)/(Mg(Y))} + XL{U > £(Y)/(Mg(Y))}.
Then X’ ~ p and
EIX' — Y[P = E|Y - XPL{U > £(Y)/(Mg(Y))}

1
= [Lp b= () 1> /) ) 0y
1
= [Rd)2 ly — x|Pf(x)g(y)dxdy — v [Rd)z ly — x|PF(x)f(y)dxdy

1 ~
=E|X — Y|P — —E|X — X|°.
M
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Application to Wi (va,, Va,,,)

We have

Vania (X) _ Zania —2(V()-V*) ey 3 a7 %) < Zana

Va,(X) - Z, T 2.,

n

=: M,.

Assuming that argmin(V*) = {x*} (or {x{,...,x;}) with V2V(x*) > 0, we have

Z;]'*/ —2(V *)/a? ds ~ ad/efxTV2V(x*)de

a—0

using that
Ve >0, va{V>V*4+e} —0.
a—0
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Using the convexity inequality

< 4e—27/4 LM7

2 2
‘6—21/3,7 e—ZZ/a"+1
Fn+1 an

we get

21zl — / (ef2(V(an+1x+X/-*)7V*)/aﬁ B efz(V(ame,.*)7v*)/a§+1) d

an an+1

o 2(V(anraxtxt)—vey a2 Vanx +x7) — V2

/
/

< 4ag;11(an — ant1)

d—1

~ 238 an — anta) [ € TV (T V(x*)x)dx
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Using similar Taylor expansions we obtain
1 ~
Wl(am anJrl) < E‘VanJrl - Va"| - VE|VEN+1 - Va,,+1‘ < C(an - 3n+1)~
n

Then if 3° Wi (va, — Va,,) < +00 the Cauchy sequence v,, converges for Wy with

Wi (va,,v*) < Cap.
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—— Non plateau case
——  Plateau case

9

W1([X;:H], V3n+1) < pngaWi(Vaps Van+1) + Nn+1#nW1(Va,._17 Vap) + -+
+ Hnt1 e lel(VamVa) + Mt .U'lwl(dxov”ao)v

fin = Cet/aepan(To=Taca) . — ¢=C2/3,

We now choose
A

+/log( Tn)7

Toir— Tn=CnP,3>0, an= A > 0 large enough

yielding
an — ant1 < (nlog®?(n))™Y, S (an — ant1) < oo,

WX ] vapis) < C(L+ [x0pnan,
where p, = O (exp(—Cn™)). And
Wi(IXP2,,1v") S Wi(IXT),, 1 Vanea) + Wi(vayes, v7)-

Thia Thta
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One word on the degenerate case V2V/(x*) # 0

We assume instead that argmin(V) = {x*} (or {x{,...,x}}) and that x* is a strict
polynomial minimum i.e.

2p
1
3r>0, vhe B(x*,r)\ {0}, Y kaV(x*) ~h*>0.
k=2 """

Following [Bras 2021], under some conditions we obtain the following Central Limit
theorem:
(a7221,...,a72%) % (B (Zs—x*)) = Z inlaw

where «; € (0,1/2], B an orthogonal base, Z, ~ v, and Z a certain non-degenerate
random vector.

Then proceeding to similar Taylor expansions but replacing the changes of variables in
X+ ax by x = B71. (a2 ... 2%2%d) x x, we obtain

Wi(va,, vay.y) < C(nlog'min(n))
and > Wi (va,,Va,,,) is still a convergence Bertrand series with
Wi (Va,, ) < Ca%ami".

e This case is not only theoretical, degenerate minima were observed for
over-parametrized neural networks [Sagun-Bottou-LeCun 2016].
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Convergence of Y; with continuously decreasing (a(t))

o We apply domino strategy to bound Wy (Xt, Y:):

Tn Tn+1

| | | | | | | | | | |

I | | — | | | 1 | | 1
ol Tn+1 -T

o for f Lipschitz-continuous and fixed T > 0:

[BFOG, 1) ~EF(YF, 1)

(Thea—Th—T)/]

4 Y X, X,
< ‘P(k—l)%Tn ° (Pw,Tn-#(k—l)v — Py e PTHL—Tn—kvf(X)‘
k=1
(Thsa—Tn)/~] X
% % X, ,n
+ > ‘P(kfl)m © (P 7, (k—1)y = P57 0 PmrTrkvf(X)’
k=[(Tata—Ta—T)/v]+1

o for k=1,...,(Tnst1 — Tn — T)/v, the kernel P5" has an exponential

Tot1—Th—ky
contraction effect on time > T:

% X, X,
(P ey = P 0 P iy P

X,n X, X
=EPTT 1k (X)) = EP)T<,,+17Tn7k7,nf(yw,rn+(k—1)w)\

—2

< Ce€rana e_Pn+1(Tn+1—Tn—k'Y)[f']Lip]E|X’>Y<7" _ Y«T,Tn+(k—1)w|
—2

< Ce€1ans e*Pn+1(Tn+1*Tn*k"/)[f]l_ipﬁ(an —ant1)
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e Bounds for the error on time intervals no longer than T:

_ V(x)
pPY —pXsmyopXon FO)| < Ca2 (an—ane1)[FlLip —mmmnl
I( ¥ Tot(k=1)y " ) Tor1—To—ky (I < Ca, i (an—ania)[fluip Tor—To— kv

using Taylor expansion. Indeed,
Elg(Y2,) — g0C™)] = (Va(x), E[Y2, — X237 + E[(Va(X2™) — Vg (x), Y, — X2
1
+/ (1 S)E [V2g(sY2, + (1 — s)XEM(Y2, — X5m©2] ds
0
and we apply to g = PN : x — Ef(X°") and using Bismuth-Elworthy-Li formula:

1 t
VX]Ef(X;""):E[f(XtX’")?/ (ano’l(XsX'”)Zs(X)’")TdWS]
0

where Z(®):7 is the tangent process (also for higher derivatives...)

Pierre BRAS and Gilles PAGES Convergence of Langevin-Simulated Annealing algorithms with



e On the other side we have
dVP(X") = pu V)T - VPTG (oo T (XMW V) + 8, TOR)) dt
+pVVXEMT - VPHXO ) ag10(XO")dWs
+ g (V2V(XS)VPHXE™) + (p — 1)V V(X2 - VP=2(X0")) a2, 00T (X" dt
and using that VV coercive, |[VV| < CV/2, 6T > goly and o is bounded, the
dominant term in dt is ~ —CVP~1(VV)2(X°") < 0 so that

supEVP(X"") < CVP(x) and supEVp(YtXu) < CVP(x).
>0
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e We apply on each time interval [T,, Tht1) and obtain the recursive inequality

2 _
WIS 1 0Y5 77 ]) < e (an — ania)oty V(X).

With x, := X;‘:, Yn = Y;.::
([X;‘:u] [Y;(n)u]) = Wl([x;—n;—lan] [YTn+1*Tn,Tn])

SWIXT S L IXE L s DX LY D)

_2 —2
< CeGoriremrmaToa—To) Wy ([X52], [Y32]) + Ce@% i (an — ans1)oyly EV(YRR),

Hnt1
m Anta
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The convergence is controlled by

Cra 2 -1
Anp1 = Ce™n+1(a, — an+1)p,,+1

with
A
ap ¥ ———
v/ log(T»)
T,,+1 jad Cn*8+1
1
ap— a = —
n n+1 N Iog3/2(n)

—2
eclan+1 ~ n(,3+1)C1/A2

prt = eC2aa ~ p(BH+1)Ga /A
— Choosing A > 0 large enough yields the convergence to 0 of
Wa(IXP, 1 IY7,,]) at rate n—(1=(B+1)(C1+C2)/A%)  Then:
WY, 1 vars) < WY L IXS 1)+ Wa(IX32, ] vai)
< CV(x0)n~ - (B+1)(C+C2)/A%)
WY, Lv") <Y L IXE, D) + WaX? 1, v™) £ CV(x0)an

Thia Thi1 Thta
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Convergence of the Euler scheme Y; with decreasing steps 7,

ypo

Mnya

~nt+1 decreasing to 0, Z% = oo, 273 <oo, Th="1+ -+ n
n n

= ?rn + Ynt1 <ba(rn)(?r)<,?) + <"+1(V|z<,? )) + a(ln)o( \_/IZ(:)(WrHH. - Wr,)

Vx, E[¢a(x)] = 0.

We adopt the same strategy of proof to bound Wy (X, Y).
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Extension to the convergence in total variation dty

o drva(m, m2) = sup {/d FO)(m1 — ma)(dx) : FRY SR, [|f]los = 1}.
R
o We follow a similar domino strategy; the main difference is the short term bound
Y 4 X,
[PFoss s @ (P gy = PG
o [Pagés-Panloup 2020] modify the domino strategy by regrouping the last terms and
establishing domino Malliavin bounds using the regularizing effect of the kernel.

e In our case we propose a simpler method allowing to track the dependency in a(t).
We establish total variation bounds of dty between an SDE and its one-step
Euler-Maruyama scheme in small time (or more generally between two SDEs with
close coefficients), giving rate ~ /2 ([Bras-Pages-Panloup 2021]).
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Thank you for your attention !
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