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Introduction - Optimization

Optimization problem

Let V : Rd → R be C1, coercive (i.e. V (x) → +∞ as |x | → ∞) and let
argmin(V ) := {x ∈ Rd : V (x) = minRd V } and V ⋆ := minV .

Objective : �nd argmin(V ).

• Example : Regression as an optimization problem

� {Φx : x ∈ Rd} family of functions Φx : Rd′ → R parametrized by x ∈ Rd (e.g. Φx

is a neural function).
� for 1 ≤ i ≤ N, (ui , vi ) ∈ Rd′ × R : data associated to a regression problem
� We want to �nd x such that for all i , Φx (ui ) ≈ vi

=⇒ Find min
x∈Rd

1

N

N∑
i=1

(Φx (ui )− vi )
2 =: min

x∈Rd
V (x).
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Introduction - Gradient descent

• Gradient descent algorithm : compute the gradient and "go down" the gradient with
decreasing step sequence (γk ):

x0 ∈ Rd

xn+1 = xn − γn+1∇V (xn).

• The continuous version is dXs = −∇V (Xs)ds.

• Problem : xn can be "trapped" !
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Introduction - Langevin Equation

• We add a white noise to xn, hoping to escape traps :

xn+1 = xn − γn+1∇V (xn) +
√
γn+1σξn+1, ξn+1 ∼ N (0, Id ).

=⇒ called SGLD algorithms (Stochastic Gradient Langevin Dynamics)
• The continuous version becomes:

dXs = −∇V (Xs)ds +σdWs (Langevin Equation)

where (Ws) is a Brownian motion and σ > 0.

• Assuming that e−2V/σ2 ∈ L1(Rd ), it is invariant measure is the Gibbs measure

νσ(x)dx = Cσe
−2(V (x)−V⋆)/σ2dx

Cσ :=

(∫
Rd

e−2(V (x)−V⋆)/σ2dx

)−1

.

• Exogenous noise σdWt added to escape local minima ('traps') and explore the state
space.
• For small σ, νσ is concentrated around argmin(V ):
Solve the Langevin equation =⇒ approximation of νσ =⇒ approximation of
argmin(V ).
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Introduction - Simulated Annealing algorithms

• We have νσ −→
σ→0

argmin(V ) in law.

• One possibility : solve the Langevin equation for small σ
• Another possibility : make σ → 0 while iterating the algorithm :

xn+1 = xn − γn+1∇V (xn) + a(γ1 + · · ·+ γn+1)σ
√
γn+1ξn+1, ξn+1 ∼ N (0, Id ),

where a(t) is decreasing and a(t) −→
t→0

0.

The continuous version becomes :

Langevin-Simulated Annealing Equation

dXt = −∇V (Xt)dt + a(t)σdWt ,

The 'instantaneous' invariant measure νa(t)σ(dx) ∝ exp
(
−2V (x)/(a2(t)σ2)

)
converges itself to argmin(V )

Schedule a(t) = A log−1/2(t) then Xt −→
t→∞

argmin(V ) in law [Chiang-Hwang

1987], [Miclo 1992]

[Gelfand-Mitter 1991] proves the convergence of the algorithm (xn).
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Multiplicative noise

Noise σ > 0 =⇒ isotropic, homogeneous noise =⇒ not adapted to V

Instead : σ(Xt) is a matrix depending on the position

In Machine Learning literature, a good choice is σ(x)σ(x)⊤ ≃ (∇2V (x))−1 as in
the Newton algorithm.

dYt = −(σσ⊤∇V )(Yt)dt + a(t)σ(Yt)dWt +

a2(t)

 d∑
j=1

∂i (σσ
⊤)(Yt)ij


1≤i≤d

 dt

︸ ︷︷ ︸
correction term Υ(Yt )

a(t) =
A√
log(t)

,

• Correction term so that νa(t) ∝ exp
(
−2V (x)/a2(t)

)
is still the "instantaneous"

invariant measure
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Objectives and assumptions

Prove the convergence in of Yt and Ȳt to ν⋆ (supported by argmin(V ))

We use the L1-Wasserstein distance:

W1(π1, π2) = sup

{∫
Rd

f (x)π1(dx)−
∫
Rd

f (x)π2(dx) : f : Rd → R, [f ]Lip = 1
}
.

and we show that W1([Yt ], ν⋆) → 0 and W1([Ȳt ], ν⋆) → 0.

We have
W1(Yt , ν

⋆) ≤ W1(Yt , νa(t)) +W1(νa(t), ν
⋆)

The convergence is limited by the slowness of a(t) as
W1(νa(t), ν

⋆) ≍ a(t) ≍ log−1/2(t). In fact we also prove

W1(Y
x0
t , νa(t)) ≤ Cα max(1+ |x0|,V (X0))t

−α

W1(Ȳ
x0
t , νa(t)) ≤ Cα max(1+ |x0|,V 2(X0))t

−α

for every α < 1.

Assumptions:
1 V is strongly convex outside some compact set
2 σ is bounded and elliptic: σσ⊤ ≥ σ0Id , σ0 > 0.
3 ∇V is Lipschitz
4 Decreasing steps (γn) for the Euler scheme, with

∑
n γn = ∞,

∑
n γ

2
n < ∞,

Γn := γ1 + · · · + γn.
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Domino strategy

[Pages-Panloup 2020] proves the convergence of the Euler scheme of a general
SDE dXt = b(Xt)dt + σ(Xt)dWt to the invariant measure π⋆ for W1:

W1(X̄t , π
⋆) → 0.

Domino strategy: for f 1-Lipschitz (P, P̄: kernels of X , X̄ ):

W1(X̄
x
Γn
,X x

Γn
) ≤ |Ef (X̄ x

Γn
)− Ef (X x

Γn
)|

= |P̄γ1 ◦ · · · ◦ P̄γn f (x)− PΓn f (x)|

=

∣∣∣∣∣
n∑

k=1

P̄γ1 ◦ · · · ◦ P̄γk−1 ◦ (P̄γk − Pγk ) ◦ PΓn−Γk f (x)

∣∣∣∣∣
≤

n∑
k=1

∣∣P̄γ1 ◦ · · · ◦ P̄γk−1 ◦ (P̄γk − Pγk ) ◦ PΓn−Γk f (x)
∣∣ ,

1 For large k =⇒ Error in small time =⇒ use bounds for ∥X x
t − X̄ x

t ∥p
2 For small k =⇒ Ergodicity contraction properties using the convexity of V outside

a compact set and the ellipticity of σ [Wang 2020]:

∀t ≥ t0, W1(X
x
t ,X

y
t ) ≤ Ce−ρt |x − y |

=⇒ W1(X
x
t , π

⋆) ≤ Ce−ρt(1 + |x|).
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Contraction property with ellipticity parameter a

• Problems before applying the domino strategy: non-homogeneous Markov chain +
the ellipticity parameter fades away in a(t).
=⇒ What is the dependency of the constants C and ρ in the ellipticity ?

Consider dXt = b(Xt)dt + aσ(Xt)dWt , a > 0 with invariant measure νa and with

∀x , y ∈ B(0,R)c , ⟨b(x)− b(y), x − y⟩+
a2

2
∥σ(x)− σ(y)∥2 ≤ −α|x − y |2.

Then

W1(X
x
t ,X

y
t ) ≤ CeC1/a

2
|x − y |e−ρat , ρa := e−C2/a

2

W1(X
x
t , νa) ≤ CeC1/a

2
e−ρatE|νa − x |.
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"By plateaux" process

We �rst consider the plateau SDE:

dXt = −σσ⊤∇V (Xt)dt + an+1σ(Xt)dWt + a2n+1Υ(Xt)dt, t ∈ [Tn,Tn+1),

an = A log−1/2(Tn)

We apply the contraction property on every plateau:

W1(XTn+1 , νan+1 |XTn ) ≤ CeC1/a
2
n+1e−ρan+1 (Tn+1−Tn)E

[
|νan+1 − XTn | |XTn

]

We integrate over the law of XTn , giving

W1([X
x0
Tn+1

], νan+1 ) ≤ CeC1/a
2
n+1e−ρan+1 (Tn+1−Tn)W1([X

x0
Tn

], νan+1 )

≤ CeC1/a
2
n+1e−ρan+1 (Tn+1−Tn)

(
W1([X

x0
Tn

], νan ) +W1(νan , νan+1 )
)
.

And we iterate:

W1([X
x0
Tn+1

], νan+1 ) ≤ µn+1W1(νan , νan+1 ) + µn+1µnW1(νan−1 , νan ) + · · ·

+ µn+1 · · ·µ1W1(νa0 , νa1 ) + µn+1 · · ·µ1W1(δx0 , νa0 ),

µn := CeC1/a
2
n e−ρan (Tn−Tn−1).
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• On the other side, we give bounds for the Gibbs measures:

W1(νan , νan+1 ) and W1(νan , ν
⋆).

Lemma: Acceptance-rejection Wasserstein bounds

Let µ and ν be two probability distributions on Rd with densities f and g respectively
with �nite moments of order p. Assume that there exists M ≥ 1 such that f ≤ Mg .
Then

Wp(µ, ν)
p ≤ E|X − Y |p −

1

M
E|X − X̃ |p ,

where X and X̃ ∼ µ, Y ∼ ν and X , X̃ and Y are mutually independent.

Proof: Let X ∼ µ, Y ∼ ν, U ∼ U([0, 1]) independent and

X ′ := Y1{U ≤ f (Y )/(Mg(Y ))}+ X1{U > f (Y )/(Mg(Y ))}.

Then X ′ ∼ µ and

E|X ′ − Y |p = E|Y − X |p1{U > f (Y )/(Mg(Y ))}

=

∫
(Rd )2

|y − x |p
(∫ 1

0

1{u > f (y)/(Mg(y))}du
)
f (x)g(y)dxdy

=

∫
(Rd )2

|y − x |pf (x)g(y)dxdy −
1

M

∫
(Rd )2

|y − x |pf (x)f (y)dxdy

= E|X − Y |p −
1

M
E|X − X̃ |p .
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Application to W1(νan , νan+1)

We have

νan+1 (x)

νan (x)
=

Zan+1

Zan

e−2(V (x)−V⋆)(a−2
n+1−a−2

n ) ≤
Zan+1

Zan

=: Mn.

Assuming that argmin(V ⋆) = {x⋆} (or {x⋆1 , . . . , x⋆ℓ }) with ∇2V (x⋆) > 0, we have

Z−1
a =

∫
e−2(V (x)−V⋆)/a2ds ∼

a→0
ad

∫
e−x⊤∇2V (x⋆)xdx

using that
∀ε > 0, νa{V ≥ V ⋆ + ε} −→

a→0
0.
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Using the convexity inequality∣∣∣e−2z/a2n − e−2z/a2n+1

∣∣∣ ≤ 4e−2z/a2n
z

a2n+1

(an − an+1)

an
,

we get

Z−1
an −Z−1

an+1
= adn+1

∫ (
e−2(V (an+1x+x⋆i )−V⋆)/a2n − e−2(V (an+1x+x⋆i )−V⋆)/a2n+1

)
dx

≤ 4ad−1
n+1 (an − an+1)

∫
e−2(V (an+1x+x⋆i )−V⋆)/a2n

V (an+1x + x⋆i )− V ⋆

a2n+1
dx

∼ 2ad−1
n+1 (an − an+1)

∫
ex

⊤∇2V (x⋆)x (x⊤V (x⋆)x)dx
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Using similar Taylor expansions we obtain

W1(an, an+1) ≤ E|νan+1 − νan | −
1

Mn
E|νan+1 − ν̃an+1 | ≤ C(an − an+1).

Then if
∑

n W1(νan − νan+1 ) < +∞ the Cauchy sequence νan converges for W1 with

W1(νan , ν
⋆) ≤ Can.
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T1 T2 T3 T4

t

a(t)

Non plateau case
Plateau case

W1([X
x0
Tn+1

], νan+1 ) ≤ µn+1W1(νan , νan+1 ) + µn+1µnW1(νan−1 , νan ) + · · ·

+ µn+1 · · ·µ1W1(νa0 , νa1 ) + µn+1 · · ·µ1W1(δx0 , νa0 ),

µn = CeC1/a
2
n e−ρan (Tn−Tn−1), ρan = e−C2/a

2
n

We now choose

Tn+1 − Tn = Cnβ , β > 0, an =
A√

log(Tn)
, A > 0 large enough

yielding
an − an+1 ≍ (n log3/2(n))−1,

∑
n

(an − an+1) < ∞,

W1([X
x0
Tn+1

], νan+1 ) ≤ C(1+ |x0|)µnan,

where µn = O (exp(−Cnη)). And

W1([X
x0
Tn+1

], ν⋆) ≤ W1([X
x0
Tn+1

], νan+1 ) +W1(νan+1 , ν
⋆).
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One word on the degenerate case ∇2V (x⋆) ≯ 0

We assume instead that argmin(V ) = {x⋆} (or {x⋆1 , . . . , x⋆ℓ }) and that x⋆ is a strict
polynomial minimum i.e.

∃r > 0, ∀h ∈ B(x⋆, r) \ {0},
2p∑
k=2

1

k!
∇kV (x⋆) · hk > 0.

Following [Bras 2021], under some conditions we obtain the following Central Limit
theorem: (

a−2α1 , . . . , a−2αd
)
∗ (B · (Za − x⋆)) → Z in law

where αi ∈ (0, 1/2], B an orthogonal base, Za ∼ νa and Z a certain non-degenerate
random vector.
Then proceeding to similar Taylor expansions but replacing the changes of variables in
x 7→ ax by x 7→ B−1 · (a2α1 , . . . , a2αd ) ∗ x , we obtain

W1(νan , νan+1 ) ≤ C(n log1+αmin (n))

and
∑

n W1(νan , νan+1 ) is still a convergence Bertrand series with

W1(νan , ν
⋆) ≤ Ca

2αmin
n .

• This case is not only theoretical, degenerate minima were observed for
over-parametrized neural networks [Sagun-Bottou-LeCun 2016].
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Convergence of Yt with continuously decreasing (a(t))

We apply domino strategy to bound W1(Xt ,Yt):

Tn Tn+1

Tn+1 − Tγ

for f Lipschitz-continuous and �xed T > 0:∣∣∣Ef (X x,n
Tn+1−Tn

)− Ef (Y x
Tn+1−Tn,Tn

)
∣∣∣

≤
⌊(Tn+1−Tn−T )/γ⌋∑

k=1

∣∣∣PY
(k−1)γ,Tn

◦ (PY
γ,Tn+(k−1)γ − PX ,n

γ ) ◦ PX ,n
Tn+1−Tn−kγ f (x)

∣∣∣
+

⌊(Tn+1−Tn)/γ⌋∑
k=⌊(Tn+1−Tn−T )/γ⌋+1

∣∣∣PY
(k−1)γ,Tn

◦ (PY
γ,Tn+(k−1)γ − PX ,n

γ ) ◦ PX ,n
Tn+1−Tn−kγ f (x)

∣∣∣
for k = 1, . . . , (Tn+1 − Tn − T )/γ, the kernel PX ,n

Tn+1−Tn−kγ has an exponential
contraction e�ect on time > T :

|(PY
γ,Tn+(k−1)γ − PX ,n

γ ) ◦ PX ,n
Tn+1−Tn−kγ f (x)|

= |EPX ,n
Tn+1−Tn−kγ f (X

x,n
γ )− EPX

Tn+1−Tn−kγ,nf (Y
x
γ,Tn+(k−1)γ)|

≤ CeC1a
−2
n+1e−ρn+1(Tn+1−Tn−kγ)[f ]LipE|X x,n

γ − Y x
γ,Tn+(k−1)γ |

≤ CeC1a
−2
n+1e−ρn+1(Tn+1−Tn−kγ)[f ]Lip

√
γ(an − an+1)
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• Bounds for the error on time intervals no longer than T :

|(PY
γ,Tn+(k−1)γ−PX ,n

γ )◦PX ,n
Tn+1−Tn−kγ f (x)| ≤ Ca−2

n+1(an−an+1)[f ]Lip
γV (x)√

Tn+1 − Tn − kγ

using Taylor expansion. Indeed,

E[g(Y x
γ,u)− g(X x,n

γ )] = ⟨∇g(x),E[Y x
γ,u − X x,n

γ ]⟩+ E[⟨∇g(X x,n
γ )−∇g(x),Y x

γ,u − X x,n
γ ⟩]

+

∫ 1

0

(1− s)E
[
∇2g(sY x

γ,u + (1− s)X x,n
γ )(Y x

γ,u − X x,n
γ )⊗2

]
ds

and we apply to g = PX ,n
t f : x 7→ Ef (X x,n

t ) and using Bismuth-Elworthy-Li formula:

∇xEf (X x,n
t ) = E

[
f (X x,n

t )
1

t

∫ t

0

(anσ
−1(X x,n

s )Z
(x),n
s )⊤dWs

]
where Z (x),n is the tangent process (also for higher derivatives...)
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• On the other side we have

dV p(X x,n
t ) = p∇V (X x,n

t )⊤ · V p−1(X x,n
t )

(
−σσ⊤(X x,n

t )∇V (X x,n
t ) + a2k+1Υ(X x,n

t )
)
dt

+ p∇V (X x,n
t )⊤ · V p−1(X x,n

t )ak+1σ(X
x,n
t )dWt

+
p

2

(
∇2V (X x,n

t )V p−1(X x,n
t ) + (p − 1)|∇V (X x,n

t )|2 · V p−2(X x,n
t )

)
a2k+1σσ

⊤(X x,n
t )dt

and using that ∇V coercive, |∇V | ≤ CV 1/2, σσ⊤ ≥ σ0Id and σ is bounded, the
dominant term in dt is ∼ −CV p−1(∇V )2(X x,n

t ) ≤ 0 so that

sup
t≥0

EV p(X x,n
t ) ≤ CV p(x) and sup

t≥0

EV p(Y x
t,u) ≤ CV p(x).
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• We apply on each time interval [Tn,Tn+1) and obtain the recursive inequality

W1([X
x,n
Tn+1−Tn

], [Y x
Tn+1−Tn,Tn

]) ≤ CeC1a
−2
n+1 (an − an+1)ρ

−1
n+1V (x).

With xn := X x0
Tn
, yn = Y x0

Tn
:

W1([X
x0
Tn+1

], [Y x0
Tn+1

]) = W1([X
xn,n
Tn+1−Tn

], [Y yn
Tn+1−Tn,Tn

])

≤ W1([X
xn,n
Tn+1−Tn

], [X yn,n
Tn+1−Tn

]) +W1([X
yn,n
Tn+1−Tn

], [Y yn
Tn+1−Tn,Tn

])

≤ CeC1a
−2
n+1e−ρn+1(Tn+1−Tn)︸ ︷︷ ︸

µn+1

W1([X
x0
Tn

], [Y x0
Tn

]) + CeC1a
−2
n+1 (an − an+1)ρ

−1
n+1︸ ︷︷ ︸

λn+1

EV (Y x0
Tn

),
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The convergence is controlled by

λn+1 := CeC1a
−2
n+1 (an − an+1)ρ

−1
n+1

with

an ≃
A√

log(Tn)

Tn+1 ≃ Cnβ+1

an − an+1 ≍
1

n log3/2(n)

eC1a
−2
n+1 ≃ n(β+1)C1/A

2

ρ−1
n = eC2a

−2
n+1 ≃ n(β+1)C2/A

2

=⇒ Choosing A > 0 large enough yields the convergence to 0 of
W1([X

x0
Tn+1

], [Y x0
Tn+1

]) at rate n−(1−(β+1)(C1+C2)/A
2). Then:

W1([Y
x0
Tn+1

], νan+1 ) ≤ W1([Y
x0
Tn+1

], [X x0
Tn+1

]) +W1([X
x0
Tn+1

], νan+1 )

⪅ CV (x0)n
−(1−(β+1)(C1+C2)/A

2)

W1([Y
x0
Tn+1

], ν⋆) ≤ W1([Y
x0
Tn+1

], [X x0
Tn+1

]) +W1([X
x0
Tn+1

], ν⋆) ⪅ CV (x0)an
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Convergence of the Euler scheme Ȳt with decreasing steps γn

Ȳ x0
Γn+1

= ȲΓn + γn+1
(
ba(Γn)(Ȳ

x0
Γn

) + ζn+1(Ȳ
x0
Γn

)
)
+ a(Γn)σ(Ȳ

x0
Γn

)(WΓn+1 −WΓn )

γn+1 decreasing to 0,
∑
n

γn = ∞,
∑
n

γ2n < ∞, Γn = γ1 + · · ·+ γn,

∀x , E[ζn(x)] = 0.

We adopt the same strategy of proof to bound W1(X , Ȳ ).
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Extension to the convergence in total variation dTV

• dTV1(π1, π2) = sup

{∫
Rd

f (x)(π1 − π2)(dx) : f : Rd → R, ∥f ∥∞ = 1
}
.

• We follow a similar domino strategy ; the main di�erence is the short term bound∣∣∣PY
Tn+1−γ−Tn,Tn

◦ (PY
γ,Tn+1−γ − PX ,n

γ )f (x)
∣∣∣ .

• [Pagès-Panloup 2020] modify the domino strategy by regrouping the last terms and
establishing domino Malliavin bounds using the regularizing e�ect of the kernel.

• In our case we propose a simpler method allowing to track the dependency in a(t).
We establish total variation bounds of dTV between an SDE and its one-step
Euler-Maruyama scheme in small time (or more generally between two SDEs with
close coe�cients), giving rate ∼ γ1/2 ([Bras-Pages-Panloup 2021]).
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Thank you for your attention !
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