Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise

Pierre BRAS and Gilles PAGÈS

Sorbonne Université

December 5, 2022

Pierre BRAS and Gilles PAGÈS Convergence of Langevin-Simulated Annealing algorithms with n

Optimization problem

Let $V:\mathbb{R}^d\to\mathbb{R}$ be \mathcal{C}^1 , coercive (i.e. $\mathcal{V}(x)\to+\infty$ as $|x|\to\infty)$ and let $argmin(V) := \{x \in \mathbb{R}^d: V(x) = min_{\mathbb{R}^d} V\}$ and $V^* := min V$.

Objective find argmin(V).

• Example : Regression as an optimization problem

 $-\,\{\Phi_x:\ x\in\mathbb R^d\}$ family of functions $\Phi_x:\mathbb R^{d'}\to\mathbb R$ parametrized by $x\in\mathbb R^d$ (e.g. Φ_x is a neural function).

– for $1\leq i\leq \mathcal{N},$ $(u_i,v_i)\in \mathbb{R}^{d'}\times \mathbb{R}$: data associated to a regression problem – We want to find x such that for all $i, \Phi_x(u_i) \approx v_i$

$$
\implies \text{ Find } \min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N (\Phi_x(u_i) - v_i)^2 =: \min_{x \in \mathbb{R}^d} V(x).
$$

All Britain Britain

 Ω

• Gradient descent algorithm : compute the gradient and "go down" the gradient with decreasing step sequence (γ_k) :

$$
x_0 \in \mathbb{R}^d
$$

$$
x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n).
$$

• The continuous version is $dX_s = -\nabla V(X_s)ds$.

• Problem : x_n can be "trapped" !

 \leftarrow \Box

 299

• We add a white noise to x_n , hoping to escape traps

$$
x_{n+1}=x_n-\gamma_{n+1}\nabla V(x_n)+\sqrt{\gamma_{n+1}}\sigma\xi_{n+1},\quad \xi_{n+1}\sim\mathcal{N}(0,I_d).
$$

 \implies called SGLD algorithms (Stochastic Gradient Langevin Dynamics)

• The continuous version becomes:

$$
dX_s = -\nabla V(X_s)ds + \sigma dW_s
$$
 (Langevin Equation)

where (W_s) is a Brownian motion and $\sigma > 0$.

 \bullet Assuming that $e^{-2V/\sigma^2} \in L^1(\mathbb{R}^d)$, it is invariant measure is the <code>Gibbs</code> measure

$$
\nu_{\sigma}(x)dx = C_{\sigma}e^{-2(V(x)-V^*)/\sigma^2}dx
$$

$$
C_{\sigma} := \left(\int_{\mathbb{R}^d} e^{-2(V(x)-V^*)/\sigma^2}dx\right)^{-1}
$$

• Exogenous noise σdW_t added to escape local minima ('traps') and explore the state space.

• For small σ , ν_{σ} is concentrated around argmin(V):

Solve the Langevin equation \implies approximation of $\nu_{\sigma} \implies$ approximation of $argmin(V)$.

.

KED KARD KED KED E VOQO

Introduction - Simulated Annealing algorithms

- \bullet We have $\nu_{\sigma} \longrightarrow \operatorname*{argmin}(V)$ in law.
- One possibility : solve the Langevin equation for small σ
- Another possibility : make $\sigma \rightarrow 0$ while iterating the algorithm :

 $x_{n+1} = x_n - \gamma_{n+1} \nabla V(x_n) + a(\gamma_1 + \cdots + \gamma_{n+1}) \sigma \sqrt{\gamma_{n+1}} \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, I_d),$

where $a(t)$ is decreasing and $a(t) \longrightarrow 0$. The continuous version becomes :

Langevin-Simulated Annealing Equation

$$
dX_t = -\nabla V(X_t)dt + a(t)\sigma dW_t,
$$

- The 'instantaneous' invariant measure $\nu_{a(t)\sigma}(dx) \propto \exp\left(-2\,V(x)/(a^2(t)\sigma^2)\right)$ converges itself to argmin (V)
- Schedule $a(t) = A \log^{-1/2}(t)$ then $X_t \xrightarrow[t \to \infty]{} \text{argmin}(V)$ in law [Chiang-Hwang 1987], [Miclo 1992]
- [Gelfand-Mitter 1991] proves the convergence of the algorithm (x_n) .

KOD KARD KED KE DAGA

- Noise $\sigma > 0 \implies$ isotropic, homogeneous noise \implies not adapted to V
- Instead : $\sigma(X_t)$ is a matrix depending on the position
- \bullet In Machine Learning literature, a good choice is $\sigma(x)\sigma(x)^\top \simeq (\nabla^2 V(x))^{-1}$ as in the Newton algorithm.

$$
dY_t = -(\sigma \sigma^\top \nabla V)(Y_t)dt + a(t)\sigma(Y_t)dW_t + \underbrace{\left(a^2(t)\left[\sum_{j=1}^d \partial_i(\sigma \sigma^\top)(Y_t)_{ij}\right]_{1 \leq i \leq d}\right)dt}_{\text{correction term } \Upsilon(Y_t)}
$$

$$
a(t) = \frac{A}{\sqrt{\log(t)}},
$$

 \bullet Correction term so that $\nu_{\mathsf{a}(t)} \propto \exp\left(-2\,V(\mathsf{x})/ \mathsf{a}^{2}(t)\right)$ is still the "instantaneous" invariant measure

 QQ

A BAR BA

Objectives and assumptions

- Prove the convergence in of Y_t and \bar{Y}_t to ν^\star (supported by argmin $(V))$
- We use the L^1 -Wasserstein distance:

$$
\mathcal{W}_1(\pi_1,\pi_2)=\sup\left\{\int_{\mathbb{R}^d}f(x)\pi_1(dx)-\int_{\mathbb{R}^d}f(x)\pi_2(dx):\ f:\mathbb{R}^d\to\mathbb{R},\ [f]_{\mathsf{Lip}}=1\right\}.
$$

and we show that $W_1([Y_t], \nu^*) \to 0$ and $W_1([\bar{Y}_t], \nu^*) \to 0$.

We have

$$
\mathcal{W}_1(Y_t, \nu^{\star}) \leq \mathcal{W}_1(Y_t, \nu_{a(t)}) + \mathcal{W}_1(\nu_{a(t)}, \nu^{\star})
$$

The convergence is limited by the slowness of $a(t)$ as ${\cal W}_1(\nu_{\mathsf a(t)},\nu^\star) \asymp \mathsf a(t) \asymp \log^{-1/2}(t)$. In fact we also prove

$$
\mathcal{W}_1(Y_t^{x_0}, \nu_{a(t)}) \leq C_{\alpha} \max(1+|x_0|, V(X_0))t^{-\alpha}
$$

$$
\mathcal{W}_1(\bar{Y}_t^{x_0}, \nu_{a(t)}) \leq C_{\alpha} \max(1+|x_0|, V^2(X_0))t^{-\alpha}
$$

for every $\alpha < 1$.

• Assumptions:

- \bullet V is strongly convex outside some compact set
- \bullet σ is bounded and elliptic: $\sigma\sigma^{\top}\geq\sigma_{\mathbf{0}}I_d$, $\sigma_{\mathbf{0}}>0.$
- **3** ∇V is Lipschitz
- \bullet Decreasing steps (γ_n) for the Euler scheme, with $\sum_n \gamma_n = \infty$, $\sum_n \gamma_n^2 < \infty$, $\Gamma_n := \gamma_1 + \cdots + \gamma_n$.

 QQ

重

Barbara

Domino strategy

[Pages-Panloup 2020] proves the convergence of the Euler scheme of a general SDE $dX_t = b(X_t)dt + \sigma(X_t)dW_t$ to the invariant measure π^{\star} for \mathcal{W}_1 .

$$
\mathcal{W}_1(\bar{X}_t, \pi^\star) \to 0.
$$

• Domino strategy: for f 1-Lipschitz (P, \overline{P}) : kernels of X, \overline{X}):

$$
\mathcal{W}_{1}(\bar{X}_{\Gamma_{n}}^{x}, X_{\Gamma_{n}}^{x}) \leq |\mathbb{E}f(\bar{X}_{\Gamma_{n}}^{x}) - \mathbb{E}f(X_{\Gamma_{n}}^{x})|
$$
\n
$$
= |\bar{P}_{\gamma_{1}} \circ \cdots \circ \bar{P}_{\gamma_{n}}f(x) - P_{\Gamma_{n}}f(x)|
$$
\n
$$
= \left| \sum_{k=1}^{n} \bar{P}_{\gamma_{1}} \circ \cdots \circ \bar{P}_{\gamma_{k-1}} \circ (\bar{P}_{\gamma_{k}} - P_{\gamma_{k}}) \circ P_{\Gamma_{n}-\Gamma_{k}}f(x) \right|
$$
\n
$$
\leq \sum_{k=1}^{n} |\bar{P}_{\gamma_{1}} \circ \cdots \circ \bar{P}_{\gamma_{k-1}} \circ (\bar{P}_{\gamma_{k}} - P_{\gamma_{k}}) \circ P_{\Gamma_{n}-\Gamma_{k}}f(x)|,
$$
\n
$$
\mathbf{C}
$$

 \textbf{D} For large $k \implies \text{Error in small time} \implies \text{use bounds for } \|X^\text{x}_t - \bar{X}^\text{x}_t\|_p$ \bullet For small $k \implies$ Ergodicity contraction properties using the convexity of V outside a compact set and the ellipticity of σ [Wang 2020]:

$$
\forall t \geq t_0, \, \mathcal{W}_1(X_t^X, X_t^Y) \leq C e^{-\rho t} |x - y|
$$
\n
$$
\implies \mathcal{W}_1(X_t^X, \pi^*) \leq C e^{-\rho t} (1 + |x|).
$$

• Problems before applying the domino strategy: non-homogeneous Markov chain + the ellipticity parameter fades away in $a(t)$.

 \implies What is the dependency of the constants C and ρ in the ellipticity ?

Consider $dX_t = b(X_t)dt + a\sigma(X_t)dW_t$, $a > 0$ with invariant measure ν_a and with

$$
\forall x, y \in \mathcal{B}(0, R)^c, \ \langle b(x) - b(y), x - y \rangle + \frac{a^2}{2} ||\sigma(x) - \sigma(y)||^2 \leq -\alpha |x - y|^2.
$$

Then

$$
\mathcal{W}_1(X_t^X, X_t^Y) \leq C e^{C_1/a^2} |x - y| e^{-\rho_a t}, \quad \rho_a := e^{-C_2/a^2}
$$

$$
\mathcal{W}_1(X_t^X, \nu_a) \leq C e^{C_1/a^2} e^{-\rho_a t} \mathbb{E} |\nu_a - x|.
$$

 299

We first consider the plateau SDE:

$$
dX_t = -\sigma \sigma^\top \nabla V(X_t) dt + a_{n+1} \sigma(X_t) dW_t + a_{n+1}^2 \Upsilon(X_t) dt, \quad t \in [T_n, T_{n+1}),
$$

$$
a_n = A \log^{-1/2}(T_n)
$$

We apply the contraction property on every plateau:

$$
W_1(X_{T_{n+1}},\nu_{a_{n+1}}\,|X_{T_n})\leq Ce^{C_1/a_{n+1}^2}e^{-\rho_{a_{n+1}}(T_{n+1}-T_n)}\mathbb{E}\left[|\nu_{a_{n+1}}-X_{T_n}|\,|X_{T_n}\right]
$$

We integrate over the law of $X_{\mathcal{T}_n}$, giving

$$
\mathcal{W}_{1}([X^{\times_{0}}_{\mathcal{T}_{n+1}}], \nu_{a_{n+1}}) \leq C e^{C_{1}/a_{n+1}^{2}} e^{-\rho_{a_{n+1}}(\mathcal{T}_{n+1} - \mathcal{T}_{n})} \mathcal{W}_{1}([X^{\times_{0}}_{\mathcal{T}_{n}}], \nu_{a_{n+1}}) \leq C e^{C_{1}/a_{n+1}^{2}} e^{-\rho_{a_{n+1}}(\mathcal{T}_{n+1} - \mathcal{T}_{n})} \left(\mathcal{W}_{1}([X^{\times_{0}}_{\mathcal{T}_{n}}], \nu_{a_{n}}) + \mathcal{W}_{1}(\nu_{a_{n}}, \nu_{a_{n+1}}) \right).
$$

And we iterate:

$$
\mathcal{W}_{1}([X_{T_{n+1}}^{x_0}], \nu_{a_{n+1}}) \leq \mu_{n+1} \mathcal{W}_{1}(\nu_{a_n}, \nu_{a_{n+1}}) + \mu_{n+1} \mu_n \mathcal{W}_{1}(\nu_{a_{n-1}}, \nu_{a_n}) + \cdots + \mu_{n+1} \cdots \mu_1 \mathcal{W}_{1}(\nu_{a_0}, \nu_{a_1}) + \mu_{n+1} \cdots \mu_1 \mathcal{W}_{1}(\delta_{x_0}, \nu_{a_0}),
$$

$$
\mu_n := Ce^{C_1/a_n^2} e^{-\rho_{a_n}(T_n - T_{n-1})}.
$$

4 17 18

 $\mathbf{A} \equiv \mathbf{A} \quad \mathbf{A} \equiv \mathbf{A}$

 299

Ε

• On the other side, we give bounds for the Gibbs measures:

 $\mathcal{W}_1(\nu_{a_n}, \nu_{a_{n+1}})$ and $\mathcal{W}_1(\nu_{a_n}, \nu^*)$.

Lemma: Acceptance-rejection Wasserstein bounds

Let μ and ν be two probability distributions on \mathbb{R}^d with densities f and g respectively with finite moments of order p. Assume that there exists $M > 1$ such that $f \leq Mg$. Then

$$
\mathcal{W}_p(\mu,\nu)^p \leq \mathbb{E}|X-Y|^p - \frac{1}{M}\mathbb{E}|X-\tilde{X}|^p,
$$

where X and $\tilde{X} \sim \mu$, Y $\sim \nu$ and X, \tilde{X} and Y are mutually independent.

Proof: Let $X \sim \mu$, $Y \sim \nu$, $U \sim \mathcal{U}([0,1])$ independent and

 $X' := Y1\{U \leq f(Y)/(Mg(Y))\} + X1\{U > f(Y)/(Mg(Y))\}.$

Then $X' \sim \mu$ and

$$
\mathbb{E}|X'-Y|^p = \mathbb{E}|Y-X|^p 1\{U > f(Y)/(Mg(Y))\}
$$

=
$$
\int_{(\mathbb{R}^d)^2} |y-x|^p \left(\int_0^1 1\{u > f(y)/(Mg(y))\} du\right) f(x)g(y)dxdy
$$

=
$$
\int_{(\mathbb{R}^d)^2} |y-x|^p f(x)g(y)dxdy - \frac{1}{M} \int_{(\mathbb{R}^d)^2} |y-x|^p f(x)f(y)dxdy
$$

=
$$
\mathbb{E}|X-Y|^p - \frac{1}{M} \mathbb{E}|X-\tilde{X}|^p.
$$

 QQ

We have

$$
\frac{\nu_{a_{n+1}}(x)}{\nu_{a_n}(x)}=\frac{\mathcal{Z}_{a_{n+1}}}{\mathcal{Z}_{a_n}}e^{-2(V(x)-V^*)(a_{n+1}^{-2}-a_n^{-2})}\leq \frac{\mathcal{Z}_{a_{n+1}}}{\mathcal{Z}_{a_n}}=:M_n.
$$

Assuming that $\text{argmin}(V^*) = \{x^*\}$ (or $\{x_1^*, \ldots, x_\ell^*\}$) with $\nabla^2 V(x^*) > 0$, we have

$$
\mathcal{Z}_a^{-1} = \int e^{-2(V(x)-V^*)/a^2} ds \underset{a\to 0}{\sim} a^d \int e^{-x^{\top}\nabla^2 V(x^*)x} dx
$$

using that

$$
\forall \varepsilon > 0, \quad \nu_a \{ V \geq V^\star + \varepsilon \} \underset{a \to 0}{\longrightarrow} 0.
$$

イロメ イ押 トイヨ トイヨメー

 \equiv

 299

Using the convexity inequality

$$
\left|e^{-2z/a_n^2}-e^{-2z/a_{n+1}^2}\right|\leq 4e^{-2z/a_n^2}\frac{z}{a_{n+1}^2}\frac{(a_n-a_{n+1})}{a_n},
$$

we get

$$
\mathcal{Z}_{a_n}^{-1} - \mathcal{Z}_{a_{n+1}}^{-1} = a_{n+1}^d \int \left(e^{-2(V(a_{n+1}x + x_i^*) - V^*)/a_n^2} - e^{-2(V(a_{n+1}x + x_i^*) - V^*)/a_{n+1}^2} \right) dx
$$

\n
$$
\leq 4 a_{n+1}^{d-1}(a_n - a_{n+1}) \int e^{-2(V(a_{n+1}x + x_i^*) - V^*)/a_n^2} \frac{V(a_{n+1}x + x_i^*) - V^*}{a_{n+1}^2} dx
$$

\n
$$
\sim 2 a_{n+1}^{d-1}(a_n - a_{n+1}) \int e^{x^{\top} \nabla^2 V(x^*)x} (x^{\top} V(x^*)x) dx
$$

メロメ メタメ メミメ メミメー

 \equiv 990

Using similar Taylor expansions we obtain

$$
\mathcal{W}_1(a_n,a_{n+1}) \leq \mathbb{E}|\nu_{a_{n+1}} - \nu_{a_n}| - \frac{1}{M_n}\mathbb{E}|\nu_{a_{n+1}} - \widetilde{\nu}_{a_{n+1}}| \leq C(a_n - a_{n+1}).
$$

Then if $\sum_n{\cal W}_1(\nu_{a_n}-\nu_{a_{n+1}})<+\infty$ the *Cauchy sequence* ν_{a_n} *c*onverges for ${\cal W}_1$ with $\mathcal{W}_1(\nu_{a_n}, \nu^{\star}) \leq C a_n.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @ .

$$
\mathcal{W}_{1}([X_{T_{n+1}}^{x_0}], \nu_{a_{n+1}}) \leq \mu_{n+1} \mathcal{W}_{1}(\nu_{a_n}, \nu_{a_{n+1}}) + \mu_{n+1} \mu_n \mathcal{W}_{1}(\nu_{a_{n-1}}, \nu_{a_n}) + \cdots \n+ \mu_{n+1} \cdots \mu_1 \mathcal{W}_{1}(\nu_{a_0}, \nu_{a_1}) + \mu_{n+1} \cdots \mu_1 \mathcal{W}_{1}(\delta_{x_0}, \nu_{a_0}),
$$
\n
$$
\mu_n = C e^{C_1/a_n^2} e^{-\rho_{a_n}(T_n - T_{n-1})}, \quad \rho_{a_n} = e^{-C_2/a_n^2}
$$

We now choose

$$
T_{n+1} - T_n = Cn^{\beta}, \beta > 0, \quad a_n = \frac{A}{\sqrt{\log(T_n)}}, \quad A > 0 \text{ large enough}
$$

yielding

$$
a_n - a_{n+1} \asymp (n \log^{3/2}(n))^{-1}, \quad \sum_n (a_n - a_{n+1}) < \infty,
$$

$$
\mathcal{W}_1([X^{\times 0}_{T_{n+1}}], \nu_{a_{n+1}}) \le C(1 + |x_0|) \mu_n a_n,
$$

where $\mu_n = O\left(\exp(-Cn^{\eta})\right)$ And

$$
\mathcal{W}_{1}([X^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}],\nu^{\star}) \leq \mathcal{W}_{1}([X^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}],\nu_{a_{n+1}}) + \mathcal{W}_{1}(\nu_{a_{n+1}},\nu^{\star}).
$$

 299

 \equiv

One word on the degenerate case $\nabla^2\,V(x^\star)\not>0$

We assume instead that $\text{argmin}(V) = \{x^{\star}\}\$ (or $\{x_1^{\star}, \ldots, x_\ell^{\star}\}\$) and that x^{\star} is a strict polynomial minimum i.e.

$$
\exists r>0, \ \forall h \in \mathcal{B}(x^*,r) \setminus \{0\}, \ \sum_{k=2}^{2p} \frac{1}{k!} \nabla^k V(x^*) \cdot h^k > 0.
$$

Following [Bras 2021], under some conditions we obtain the following Central Limit theorem:

$$
(a^{-2\alpha_1},\ldots,a^{-2\alpha_d}) * (B \cdot (Z_a-x^*)) \to Z \quad \text{in law}
$$

where $\alpha_i \in (0, 1/2]$, B an orthogonal base, $Z_a \sim \nu_a$ and Z a certain non-degenerate random vector.

Then proceeding to similar Taylor expansions but replacing the changes of variables in $\chi \mapsto$ ax by $\chi \mapsto B^{-1} \cdot (a^{2\alpha_1}, \ldots, a^{2\alpha_d}) * \chi$, we obtain

$$
\mathcal{W}_1(\nu_{a_n},\nu_{a_{n+1}})\leq C(n\log^{1+\alpha_{\min}}(n))
$$

and $\sum_n \mathcal{W}_1(\nu_{\mathsf{a}_n},\nu_{\mathsf{a}_{n+1}})$ is still a convergence Bertrand series with

$$
\mathcal{W}_1(\nu_{a_n}, \nu^\star) \leq C a_n^{2\alpha_{\min}}.
$$

• This case is not only theoretical, degenerate minima were observed for over-parametrized neural networks [Sagun-Bottou-LeCun 2016].

 $($ \Box $)$ $($

 \mathbf{F} Ω

Convergence of Y_t with continuously decreasing $(a(t))$

• We apply *domino strategy* to bound $W_1(X_t, Y_t)$:

• for f Lipschitz-continuous and fixed $T > 0$:

$$
\begin{split} & \left| \mathbb{E} f(X_{T_{n+1}-T_n}^{x,n}) - \mathbb{E} f(Y_{T_{n+1}-T_n,T_n}^{x}) \right| \\ & \leq \sum_{k=1}^{\lfloor (T_{n+1}-T_n-T)/\gamma \rfloor} \left| P_{(k-1)\gamma,T_n}^{Y} \circ (P_{\gamma,T_n+(k-1)\gamma}^{Y} - P_{\gamma}^{X,n}) \circ P_{T_{n+1}-T_n-k\gamma}^{X,n} f(x) \right| \\ & + \sum_{k=\lfloor (T_{n+1}-T_n-T)/\gamma \rfloor + 1}^{ \lfloor (T_{n+1}-T_n)/\gamma \rfloor} \left| P_{(k-1)\gamma,T_n}^{Y} \circ (P_{\gamma,T_n+(k-1)\gamma}^{Y} - P_{\gamma}^{X,n}) \circ P_{T_{n+1}-T_n-k\gamma}^{X,n} f(x) \right| \end{split}
$$

for $k=1,\ldots,$ $({\mathcal T}_{n+1}-{\mathcal T}_{n}-{\mathcal T})/\gamma,$ the kernel $P^{\mathsf{X},n}_{\mathcal{T}_{n+1}-\mathcal{T}_{n}-k\gamma}$ has an exponential contraction effect on time $>$ T :

$$
\begin{split} | (P^Y_{\gamma, T_n + (k-1)\gamma} - P^X_{\gamma} \cdot n) \circ P^{X,n}_{T_{n+1} - T_n - k\gamma} f(x) | \\ &= |\mathbb{E} P^{X,n}_{T_{n+1} - T_n - k\gamma} f(X^X_{\gamma} \cdot n) - \mathbb{E} P^{X}_{T_{n+1} - T_n - k\gamma, n} f(Y^X_{\gamma, T_n + (k-1)\gamma}) | \\ &\leq C e^{C_1 a_{n+1}^{-2}} e^{-\rho_{n+1} (T_{n+1} - T_n - k\gamma)} [f]_{\text{Lip}} \mathbb{E} |X^X_{\gamma} \cdot n - Y^X_{\gamma, T_n + (k-1)\gamma} | \\ &\leq C e^{C_1 a_{n+1}^{-2}} e^{-\rho_{n+1} (T_{n+1} - T_n - k\gamma)} [f]_{\text{Lip}} \sqrt{\gamma} (a_n - a_{n+1}) \end{split}
$$

 \bullet Bounds for the error on time intervals no longer than T :

$$
|(P^Y_{\gamma, T_n+(k-1)\gamma}-P^{X,n}_{\gamma})\circ P^{X,n}_{T_{n+1}-T_n-k\gamma}f(x)|\leq Ca_{n+1}^{-2}(a_n-a_{n+1})[f]_{\text{Lip}}\frac{\gamma V(x)}{\sqrt{T_{n+1}-T_n-k\gamma}}
$$

using Taylor expansion. Indeed,

$$
\mathbb{E}[g(Y_{\gamma,u}^{\mathsf{x}})-g(X_{\gamma}^{\mathsf{x},n})]=\langle \nabla g(\mathsf{x}),\mathbb{E}[Y_{\gamma,u}^{\mathsf{x}}-X_{\gamma}^{\mathsf{x},n}]\rangle+\mathbb{E}[\langle \nabla g(X_{\gamma}^{\mathsf{x},n})-\nabla g(\mathsf{x}),Y_{\gamma,u}^{\mathsf{x}}-X_{\gamma}^{\mathsf{x},n}\rangle]\\+\int_0^1(1-s)\mathbb{E}\left[\nabla^2 g(sY_{\gamma,u}^{\mathsf{x}}+(1-s)X_{\gamma}^{\mathsf{x},n})(Y_{\gamma,u}^{\mathsf{x}}-X_{\gamma}^{\mathsf{x},n})^{\otimes2}\right]ds
$$

and we apply to $g = P_t^{X,n} f: x \mapsto \mathbb{E} f(X_t^{x,n})$ and using Bismuth-Elworthy-Li formula:

$$
\nabla_{\mathsf{x}} \mathbb{E} f(X_t^{\mathsf{x},n}) = \mathbb{E}\Big[f(X_t^{\mathsf{x},n})\frac{1}{t}\int_0^t (a_n\sigma^{-1}(X_s^{\mathsf{x},n})Z_s^{(\mathsf{x}),n})^\top dW_s\Big]
$$

where $Z^{(\times),n}$ is the tangent process (also for higher derivatives...)

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 > 10 Q Q Q

• On the other side we have

$$
dV^{p}(X_{t}^{x,n}) = p \nabla V(X_{t}^{x,n})^{\top} \cdot V^{p-1}(X_{t}^{x,n}) \left(-\sigma \sigma^{\top}(X_{t}^{x,n}) \nabla V(X_{t}^{x,n}) + a_{k+1}^{2} \Upsilon(X_{t}^{x,n}) \right) dt + p \nabla V(X_{t}^{x,n})^{\top} \cdot V^{p-1}(X_{t}^{x,n}) a_{k+1} \sigma(X_{t}^{x,n}) dW_{t} + \frac{p}{2} \left(\nabla^{2} V(X_{t}^{x,n}) V^{p-1}(X_{t}^{x,n}) + (p-1) |\nabla V(X_{t}^{x,n})|^{2} \cdot V^{p-2}(X_{t}^{x,n}) \right) a_{k+1}^{2} \sigma \sigma^{\top}(X_{t}^{x,n}) dt
$$

and using that ∇V coercive, $|\nabla V|\leq C V^{1/2}$, $\sigma\sigma^\top\geq\sigma_0I_d$ and σ is bounded, the dominant term in dt is $\sim -CV^{p-1}(\nabla V)^2(X_t^{x,n})\leq 0$ so that

$$
\sup_{t\geq 0}\mathbb{E}V^p(X_t^{x,n})\leq CV^p(x) \text{ and } \sup_{t\geq 0}\mathbb{E}V^p(Y_{t,u}^x)\leq CV^p(x).
$$

メロメ メ御 ドメ 君 ドメ 君 ドッ

 \equiv

 QQ

• We apply on each time interval $[T_n, T_{n+1})$ and obtain the recursive inequality

$$
\mathcal{W}_1([X^{x,n}_{T_{n+1}-T_n}], [Y^{x}_{T_{n+1}-T_n,T_n}]) \leq C e^{C_1 a_{n+1}^{-2}} (a_n - a_{n+1}) \rho_{n+1}^{-1} V(x).
$$

With $x_n := X^{\times 0}_{T_n}$, $y_n = Y^{\times 0}_{T_n}$.

$$
\mathcal{W}_{1}([\mathsf{X}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{0}}],[\mathsf{Y}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{0}}]) = \mathcal{W}_{1}([\mathsf{X}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{n},n}-\mathsf{T}_{n}], [\mathsf{Y}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{n}}-\mathsf{T}_{n},\mathsf{T}_{n}]) \leq \mathcal{W}_{1}([\mathsf{X}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{n},n}-\mathsf{T}_{n}], [\mathsf{X}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{n},n}-\mathsf{T}_{n}]) + \mathcal{W}_{1}([\mathsf{X}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{n},n}-\mathsf{T}_{n}], [\mathsf{Y}_{\mathsf{T}_{n+1}}^{\mathsf{x}_{n}}-\mathsf{T}_{n},\mathsf{T}_{n}]) \leq \underbrace{\mathsf{C}e^{\mathsf{C}_{1}a_{n+1}^{-1}e^{-\rho_{n+1}(\mathsf{T}_{n+1}-\mathsf{T}_{n})}} \mathcal{W}_{1}([\mathsf{X}_{\mathsf{T}_{n}}^{\mathsf{x}_{0}}], [\mathsf{Y}_{\mathsf{T}_{n}}^{\mathsf{x}_{0}}]) + \underbrace{\mathsf{C}e^{\mathsf{C}_{1}a_{n+1}^{-1}a}(\mathsf{a}_{n}-\mathsf{a}_{n+1})\rho_{n+1}^{-1}}_{\lambda_{n+1}} \mathbb{E}\mathsf{V}(\mathsf{Y}_{\mathsf{T}_{n}}^{\mathsf{x}_{0}}),
$$

メロメ メタメ メモメ メモメー

活

 299

The convergence is controlled by

$$
\lambda_{n+1}:=Ce^{C_1a_{n+1}^{-2}}(a_n-a_{n+1})\rho_{n+1}^{-1}
$$

with

$$
a_n \simeq \frac{A}{\sqrt{\log(T_n)}}\nT_{n+1} \simeq Cn^{\beta+1}
$$
\n
$$
a_n - a_{n+1} \asymp \frac{1}{n \log^{3/2}(n)}
$$
\n
$$
e^{C_1 a_{n+1}^{-2}} \simeq n^{(\beta+1)C_1/A^2}
$$
\n
$$
\rho_n^{-1} = e^{C_2 a_{n+1}^{-2}} \simeq n^{(\beta+1)C_2/A^2}
$$

 \implies Choosing $A > 0$ large enough yields the convergence to 0 of $\mathcal{W}_1([X^{\mathsf{x}_0}_{\mathcal{T}_{n+1}}], [Y^{\mathsf{x}_0}_{\mathcal{T}_{n+1}}])$ at rate $n^{-(1-(\beta+1)(C_1+C_2)/A^2)}$. Then:

$$
\mathcal{W}_{1}([Y^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}], \nu_{a_{n+1}}) \leq \mathcal{W}_{1}([Y^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}], [X^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}]) + \mathcal{W}_{1}([X^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}], \nu_{a_{n+1}})
$$

$$
\lessapprox C V(\mathsf{x}_{0}) n^{-(1-(\beta+1)(C_{1}+C_{2})/A^{2})}
$$

$$
\mathcal{W}_{1}([Y^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}], \nu^{*}) \leq \mathcal{W}_{1}([Y^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}], [X^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}]) + \mathcal{W}_{1}([X^{\mathsf{x}_{0}}_{\mathcal{T}_{n+1}}], \nu^{*}) \lessapprox C V(\mathsf{x}_{0}) a_{n}
$$

4 00 16

 $\mathbf{A} \equiv \mathbf{A} \quad \mathbf{A} \equiv \mathbf{A}$

Þ

 QQ

$$
\begin{aligned}\n\bar{Y}_{\Gamma_{n+1}}^{\times 0} &= \bar{Y}_{\Gamma_n} + \gamma_{n+1} \left(b_{a(\Gamma_n)} (\bar{Y}_{\Gamma_n}^{\times 0}) + \zeta_{n+1} (\bar{Y}_{\Gamma_n}^{\times 0}) \right) + a(\Gamma_n) \sigma (\bar{Y}_{\Gamma_n}^{\times 0}) (W_{\Gamma_{n+1}} - W_{\Gamma_n}) \\
\gamma_{n+1} \text{ decreasing to } 0, \quad \sum_n \gamma_n &= \infty, \quad \sum_n \gamma_n^2 < \infty, \quad \Gamma_n = \gamma_1 + \dots + \gamma_n, \\
\forall x, \ \mathbb{E}[\zeta_n(x)] &= 0.\n\end{aligned}
$$

We adopt the same strategy of proof to bound $\mathcal{W}_1(X,\bar{Y})$.

 299

舌

$$
\bullet \ d_{\text{TV1}}(\pi_1, \pi_2) = \sup \left\{ \int_{\mathbb{R}^d} f(x) (\pi_1 - \pi_2)(dx) : f: \mathbb{R}^d \to \mathbb{R}, \ ||f||_{\infty} = 1 \right\}.
$$

• We follow a similar *domino strategy*; the main difference is the short term bound

$$
\left|P^Y_{T_{n+1}-\gamma-T_n,T_n}\circ(P^Y_{\gamma,T_{n+1}-\gamma}-P^{X,n}_{\gamma})f(x)\right|.
$$

• [Pagès-Panloup 2020] modify the domino strategy by regrouping the last terms and establishing domino Malliavin bounds using the regularizing effect of the kernel.

• In our case we propose a simpler method allowing to track the dependency in $a(t)$. We establish total variation bounds of d_{TV} between an SDE and its one-step Euler-Maruyama scheme in small time (or more generally between two SDEs with close coefficients), giving rate $\sim \gamma^{1/2}$ ([Bras-Pages-Panloup 2021]).

 $($ \Box $)$ $($

 QQ

 \equiv

Thank you for your attention !

イロメ イ団メ イモメ イモメー

■ 1 2990