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Introduction - Optimization

Optimization problem

Let f : Rd → R be C1, coercive (i.e. f(x)→ +∞ as |x| → ∞) and let
argmin(f) := {x ∈ Rd : f(x) = minRd f}.

Objective : �nd argmin(f).

• Example : Regression as an optimization problem

� {Φx : x ∈ Rd} family of functions Φx : Rd′ → R parametrized by x ∈ Rd (e.g. Φx
is a neural function).

� for 1 ≤ i ≤ N , (ui, vi) ∈ Rd′ × R : data associated to a regression problem
� We want to �nd x such that for all i, Φx(ui) ≈ vi

=⇒ Find min
x∈Rd

1

N

N∑
i=1

(Φx(ui)− vi)2 =: min
x∈Rd

f(x).
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Introduction - Gradient descent

• Gradient descent algorithm : compute the gradient and "go down" the gradient with
step γ > 0 :

x0 ∈ Rd

xn+1 = xn − γ∇f(xn).

• The continuous version is Ys = −∇f(Ys)ds.

• Problem : xn can be "trapped" !
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Introduction - Langevin Equation

• We add a white noise to xn, hoping to escape traps :

xn+1 = xn − γ∇f(xn) +
√
γσξn+1, ξn+1 ∼ N (0, Id).

• The continuous version becomes :

dYs = −∇f(Ys)ds +σdWs (Langevin Equation)

= −∇f(Ys)ds +
√

2tdWs,

where (Ws) is a Brownian motion.
("t is not the time but a parameter, with t = σ2/2).
• Assuming that e−f/t ∈ L1(Rd), it is invariant measure is the Gibbs measure

πt(x)dx = Cte
−f(x)/tdx

Ct =

(∫
Rd
e−f(x)/tdx

)−1

.
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Introduction - Stochastic Optimization

• For small t, the Gibbs measure πt is concentrated around argmin(f). Assuming that
f? = 0 :

∀ε > 0, πt{f ≥ ε} −→
t→0

0.

Indeed, we have

Ct ≤
(∫

f≤ε/3
e−

f(x)
t dx

)−1

≤
(
e−

ε
3t

∫
f≤ε/3

dx

)−1

.

If f(x) ≥ ε then e−
f(x)
t ≤ e−

2ε
3t e−

f(x)
3t and then

πt{f ≥ ε} = Ct

∫
f≥ε

e−f(x)/tdx ≤ e
ε
3t

(∫
f≤ε/3

dx

)−1

e−
2ε
3t

∫
Rd
e−

f(x)
3t dx

≤
(∫

f≤ε/3
dx

)−1 (∫
Rd
e−f(x)dx

)
e−

ε
3t −→

t→0
0.

• Solve the Langevin Equation for small t > 0, which gives an approximation of
argmin(f).
=⇒ What is the quality of this approximation ?

• Another method is to make t slowly decrease to 0 inside the Langevin Equation
dYs = −∇f(Ys)ds+

√
2t(s)dWs with t(s)→ 0 as s→∞ ([Chiang-Hwang-Sheu

1987], [Gelfand-Mitter 1990]).
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Rate of convergence of Gibbs measures

Simplest case : argmin(f) = {x?}, ∇f(x?) = 0 and ∇2f(x?) > 0. Then :

πt
L−→
t→0

δx? (Dirac measure)

πt(x)dx = Cte
−f(x)/tdx ' Cte−

1
2t
x>·∇2f(x?)·xdx

1
√
t
(Xt − x?) −→

t→0
X ∼ N (0, (∇2f(x?))−1)

where Xt ∼ πt converges to x? at speed
√
t.

Multiple well case (Hwang 1980) : argmin(f) = {x?1, . . . , x?m} and for all i,
∇2f(x?i ) > 0. Then

πt −→
1∑m

j=1 det−1/2(∇2f(x?j ))

m∑
i=1

−1/2

det (∇2f(x?i ))δx?i

1
√
t
(Xit − x?i ) −→

t→0
Xi ∼ N (0, (∇2f(x?i ))−1),

where Xit has the law of Xt conditionally to ||Xt − x?i || < r.
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Rate of convergence of Gibbs measures

Degenerate case :

Theorem (Athreya-Hwang, 2010)

Assume that min(f) = 0, argmin(f) = {0}, and that there exist α1, . . . , αd > 0 and

g : Rd → R such that

∀(h1, . . . , hd) ∈ Rd,
1

t
f(tα1h1, . . . , t

αdhd) −→
t→0

g(h1, . . . , hd) ∈ R.∫
Rd

sup
0<t<1

e−
f(tα1h1,...,t

αdhd)
t dh1 . . . dhd <∞.

Then (
(Xt)1

tα1
, . . . ,

(Xt)d

tαd

)
L−→ X as t→ 0 (1)

where Xt ∼ πt and where the distribution of X has a density proportional to

e−g(x1,...,xd).

Question : How can we �nd such α1, . . ., αd and g ?

In the case where ∇2f(x?) > 0 then let B ∈ Od(R) such that
∇2f(x?) = BDiag(β1:d)B> and take α1, . . . , αd = 1/2 so that

1

t
(f(x? + t1/2B · h)− f(x?)) −→

t→0

1

2

d∑
i=1

βih
2
i := g(h)
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Derivatives tensors

We focus on the case where argmin(f) = {x?} and where ∇2f(x?) is not
de�nite.

Multi-dimensional Taylor-Young formula :

f(x+ h) =
h→0

p∑
k=0

1

k!
∇kf(x) · h⊗k + ||h||po(1),

where
∇kf(x) =

(
∂ki1,...,ikf(x)

)
i1,i2,...,ik∈{1,...,d}

and
h⊗k = h⊗ · · · ⊗ h = (hi1 . . . hik )i1,i2,...,ik∈{1,...,d}

are tensors of order k, and where for T a k-tensor and v1, . . . , vk k vectors in Rd,

T · v1 ⊗ · · · ⊗ vk =
∑

i1,...,ik∈{1,...,d}
Ti1,...,ikv

1
i1
. . . vkik .

By Schwarz's Theorem, the tensor ∇kf(x) is symmetric.

Multidimensional Newton Formula :

(h1 + h2 + · · ·+ hp)⊗k =
∑

i1,...,ip∈{0,...,k}
i1+···+ip=k

( k

i1, . . . , ip

)
h⊗i11 ⊗ · · · ⊗ h⊗ipp ,

where
( k
i1,...,ip

)
= k!

i1!···ip!
is the p-nomial coe�cient.
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Polynomial minimum

We assume instead that x? is a strictly polynomial minimum of order 2p > 2 i.e.
in a neighbourhood of x?,

2p∑
k=1

1

k!
∇kf(x?) · h⊗k > 0.

Objective

Find α1, . . . , αd > 0 and B ∈ Od(R) such that

∀h ∈ Rd,
1

t
[f(x? +B · (tα1h1, . . . , t

αdhd))− f(x?)] −→
t→0

g(h1, . . . , hd),

where g : Rd → R is non constant in any of its coordinates.

Example : one-dimensional case : Let m be the polynomial order of x?, then

1

t
(f(x? + t1/mh)− f(x?)) −→

t→0

f (m)(x?)

m!
hm.

Then α1 = 1/m and g(h) =
f(m)(x?)

m!
hm.
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Expansion of f at a local minimum with degenerate derivatives for 2p = 4

Notations : pF : Rd → F the orthogonal projection, Tk := ∇kf(x?).

For 2p = 4 :

F := {h ∈ Rd : T2 · h⊗2 = 0} = {h ∈ Rd : T2 · h⊗1 = 0⊗1},

and E = F⊥ so
Rd = E ⊕ F.

Apply Taylor and Newton formulas up to order 4 to

1

t

[
f(x? + t1/2pE(h) + t1/4pF (h))− f(x?)

]
(2)

=
1

t

4∑
k=2

1

k!
Tk · (t1/2pE(h) + t1/4pF (h))⊗k + o(1)

=
t→0

4∑
k=2

1

k!

∑
i1,i2∈{0,...,k}
i1+i2=k

( k

i1, i2

)
t
i1
2

+
i2
4
−1Tk · pE (h)⊗i1 ⊗ pF (h)⊗i2 + o(1)
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If i1
2

+ i2
4
− 1 > 0 then it converges to 0

By de�nition of F , for all h′, T2 · pF (h)⊗ h′ = 0.

By the minimum condition :

1

t
[f(x? + pF (h))− f(x?)] =

1

3!
T3 · pF (h)⊗3 + o(h3) ≥ 0

=⇒ T3 · pF (h)⊗3 = 0

We obtain

(2) −→
1

2
T2 · pE(h)⊗2 +

1

4!
T4 · pF (h)⊗4 +

1

2
T3 · pE(h)⊗ pF (h)⊗2

Since x? is polynomial of order 4 then T4 > 0 on F so the limit function is not
constant in any of its coordinates.

"The odd cross term in T3 can be non null, for example

f(x, y) = x2 + y4 + xy2.
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Hilbert's 17th problem

We would like to proceed by induction as before, for example considering

F2 := {h ∈ F : T4 · h⊗4 = 0}.

T4 is a symmetric tensor so we can write

∀h ∈ F, T4 · h⊗4 =

q∑
i=1

λi〈vi, h〉4.

And since
∀h ∈ F, T4 · h⊗4 ≥ 0,

we could think that the λi are positive, which would give a linear characterization of
F2. However this is not always the case :

Hilbert's 17th problem

Let P be a non-negative polynomial homogeneous of even degree. Find polynomials
P1, . . . , Pr such that P =

∑r
i=1 P

2
i .

=⇒ This problem does not always have a solution.
=⇒ F2 is not always a subspace ! (not even a sub-manifold !)
• Counter example : P (X,Y, Z) = (X − Y )2(X − Z)2.
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Expansion up to 2p = 8

We now consider the subspaces

Fk := {h ∈ Fk−1 : ∀h′ ∈ Fk−1, ∇2kf(x?) · h⊗ h′⊗2k−1 = 0},

and Ek the orthogonal complement of Fk in Fk−1.

E1 F1

T2 ≥ 0

T2 = 0
E2 F2

T4 ≥ 0
T4 = 0

E3 F3

T6 ≥ 0 T6 = 0

Table � Illustration of the subspaces

Rd = E1 ⊕ E2 ⊕ E3 ⊕ F3 and E4 := F3.

We expand

1

t

[
f(x? + t1/2pE1

(h) + t1/4pE2
(h) + t1/6pE3

(h) + t1/8pF3
(h))− f(x?)

]
(3)

=
8∑
k=2

1

k!

∑
i1,...,i4∈{0,...,k}
i1+···+i4=k

( k

i1, . . . , i4

)
t
i1
2

+···+ i4
8
−1Tk · pE1

(h)⊗i1 ⊗ pE2
(h)⊗i2

⊗ pE3
(h)⊗i3 ⊗ pF3

(h)⊗i4 + o(1).
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If i1
2

+ · · ·+ i4
8
− 1 > 0, then it converges to 0.

We need to prove that

i1

2
+ · · ·+

i4

8
− 1 < 0 =⇒ Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pE4
(h)⊗i4 = 0.

Example : Prove that for all h ∈ Rd and h′ ∈ F2 = E3 ⊕ E4,
T3 · pE1

(h)⊗ (h′)⊗2 = 0. We prove

∀h ∈ Rd, T3 · pE1
(h)⊗ pF2

(h)⊗2 = 0.

Indeed, using the expansion for 2p = 4 we have :

1

t

[
(f(x? + t1/2pE1

(h) + t1/6pF2
(h))− f(x?)

]
−→
t→0

1

2
T2 · pE1 (h)⊗2 +

1

2
T3 · pE1 (h)⊗ pF2 (h)⊗2 ≥ 0.

Replacing h by λh, λ ∈ R, we have for all λ ∈ R :

λ2

2
T2 · pE1

(h)⊗2 +
λ3

2
T3 · pE1

(h)⊗ pF2
(h)⊗2 ≥ 0,

so necessarily ∀h ∈ Rd, T3 · pE1
(h)⊗ pF2

(h)⊗2 = 0.
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Expansion up to 2p = 8

We �nally obtain :

(3) −→
1

2
T2·pE1 (h)⊗2+

1

2
T3·pE1 (h)⊗2⊗pE2 (h)+

1

2
T4·pE1 (h)⊗pE2 (h)⊗pE4 (h)⊗2+. . .

Order 2 (2, 0, 0, 0)

Order 3 (2, 1, 0, 0)

Order 4 (0, 4, 0, 0), (1, 1, 0, 2), (1, 0, 3, 0)

Order 5 (1, 0, 0, 4), (0, 2, 3, 0), (0, 3, 0, 2)

Order 6 (0, 1, 3, 2), (0, 2, 0, 4), (0, 0, 6, 0)

Order 7 (0, 1, 0, 6), (0, 0, 3, 4)

Order 8 (0, 0, 0, 8)

Table � Terms expressed as 4-tuples in the expansion
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Case 2p ≥ 10

Up to p = 8, the proof relies on positiveness arguments due to the minimum
property. However, if there exists a tuple (i1, . . . , ip) such that the exponent
i1
2

+ · · ·+ ip
2p
− 1 < 0 and all the ik are even, then this argument fails.

Such terms do not occur for p ≤ 8 but do occur for p ≥ 10, for example with
(0, 2, 0, 0, 4).

Under the technical assumption that for such values of (i1, . . . , ip),

Tk · pE1
(h)⊗i1 ⊗ · · · ⊗ pEp (h)⊗ip = 0,

(with k = i1 + · · ·+ ip), we prove a similar expansion for p ≥ 10.
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Going back to Gibbs measures and coercivity problems

We choose

(α1, . . . , αd) =

1

2
, . . . ,

1

2︸ ︷︷ ︸
dim(E1)

,
1

4
, . . . ,

1

4︸ ︷︷ ︸
dim(E2)

, . . . ,
1

2p
, . . . ,

1

2p︸ ︷︷ ︸
dim(Ep)


and the basis B adapted to the decomposition Rd = E1 ⊕ · · · ⊕ Ep.
So that

1

t
[f(x? +B · (tα1h1, . . . , t

αdhd)− f(x?)]→ g(h1, . . . , hd),

where g is a non-negative polynomial function expressed before ; this satis�es the
assumption of [Athreya-Hwang 2010] in the case where some derivatives of f are
degenerate.

The conclusion is that(
(B−1 ·Xt)1

tα1
, . . . ,

(B−1 ·Xt)d
tαd

)
L−→ X as t→ 0

where the distribution of X has a density proportional to e−g(x1,...,xd).

However, e−g might be not in L1(Rd) ; this happens when g is not coercive, for
example f(x, y) = (x− y2)2 + x6, g(x, y) = (x− y2)2.

We give methods to deal with simple non-coercive cases, but we do not give a
general formula.

Pierre Bras (PhD Student under the direction of Gilles Pagès)
Convergence rates of Gibbs measures with degenerate minimum



Thank you for your attention !
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