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Introduction - Optimization

Optimization problem

Let f:R? — R be C!, coercive (i.e. f(x) — 400 as |z| — co) and let
argmin(f) := {x € R?: f(x) = minpq f}.

Objective : find argmin(f).

e Example : Regression as an optimization problem

- {®; : x € R} family of functions &, : RY — R parametrized by = € R? (e.g. Po
is a neural function).

—for1<i <N, (us,v;) € RY x R : data associated to a regression problem

— We want to find x such that for all 4, ®,(u;) ~ v;

N

1
— Find min — ., (u;) — ;)% =: min f(z).
min 7 320w~ ) = min /(2
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Introduction - Gradient descent

o Gradient descent algorithm : compute the gradient and "go down" the gradient with
stepy > 0:

xo € R?
Tn4+1 = Tn — 'va(xn)

e The continuous version is Ys = —V f(Ys)ds.

X0 X* X0 Xk

e Problem : z,, can be "trapped"!
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Introduction - Langevin Equation

e We add a white noise to =, hoping to escape traps :
Tn1 = 2n = YV (Tn) /70801, Enrr ~ N(0,1q).
e The continuous version becomes :
dYs = =V f(Ys)ds +odWs (Langevin Equation)
—Vf(Ys)ds +V/2tdWs,

where (W) is a Brownian motion.
(At is not the time but a parameter, with ¢t = 02/2).
e Assuming that e=#/t ¢ L1(R%), it is invariant measure is the Gibbs measure

7w (x)dr = Cteff(z)/tdx

c, = /e—f(Z)/tdx -
Rd
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Introduction - Stochastic Optimization

o For small ¢, the Gibbs measure 7; is concentrated around argmin(f). Assuming that
fr=0:
> .
Ve > 0, m{f_e};))O

Indeed, we have

If f(x) >ethene” "t <e 3te” 3t and then

-1
£ £ f(z)
m{f >e} = Ct/ e @)/t gy < e3t / dx ef% / e” "3t dx
fze f<e/3 R

-1
< / dx (/ e_f(“)d:v) e~ 3t — 0.
f<e/3 R4 t—0

e Solve the Langevin Equation for small ¢ > 0, which gives an approximation of

argmin(f).
—> What is the quality of this approximation ?

e Another method is to make ¢ slowly decrease to 0 inside the Langevin Equation
dYs = =V f(Ys)ds + 1/2t(s)dWs with t(s) — 0 as s — oo ([Chiang-Hwang-Sheu
1987], [Gelfand-Mitter 1990]).
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Rate of convergence of Gibbs measures

m Simplest case : argmin(f) = {z*}, Vf(2*) = 0 and V2f(z*) > 0. Then :
Z .
™= 0z+ (Dirac measure)

me(@)de = Cre= T @ty ~ Cye=3e® V@) e gy
1
Vi

where X; ~ m; converges to z* at speed Vt.

(X —a*) — X ~ N0, (V2f(a*) )

m Multiple well case (Hwang 1980) : argmin(f) = {z},...,z},} and for all i,
V2f(z¥) > 0. Then

1
Sy detTH2(V2 f(=

i det (V2 f(@7))80r

Tt —>

1
Vi

where X;; has the law of X; conditionally to || X: — «}|| < r.

(Xie —af) — Xi ~ N(0, (sz(mf))_l)’
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Rate of convergence of Gibbs measures

m Degenerate case :

Theorem (Athreya-Hwang, 2010)

Assume that min(f) = 0, argmin(f) = {0}, and that there exist o1, ..., ag > 0 and
g : RY — R such that

1
V(hi,...,hg) € RY, ;f(talhl,...,to‘dhd)t—gg(hl,...,hd)e]R.
—
FEE L 25 000 t%dhg)
/ sup e L 4 dhy ...dhg < oo.
R

d0<t<1

Then

o1 t¥d

((Xt)l,,..,@)ix ast—0 1)

where X ~ m¢ and where the distribution of X has a density proportional to
e—9(@1,.xq)

= Question : How can we find such a1, ..., ag and g?

m In the case where V2 f(2*) > 0 then let B € O4(R) such that
V2 f(x*) = BDiag(B81.4)B" and take a1,...,aq = 1/2 so that

1 13
JU@E 2B ) = @) =y 5 > BihE = g(h)
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Derivatives tensors

m We focus on the case where argmin(f) = {z*} and where V2 f(z*) is not
definite.

m Multi-dimensional Taylor-Young formula :
~ 1 ®k
= i . Po(1
flat 1) 5, 32 VAT KO 4 Ao,

where

VF () = (050, (@)

i1,82,..,0 €{1,...,d}
and
MR =hg - @h= (hiy - hiy )iy o ige{l,...,d}

are tensors of order k, and where for T a k-tensor and v!,... v* k vectors in RY,

1 k 1 k
T -v® - v’ = E Ti1,---,ikvi1'~~vik~
i1 yeenip €{1,...,d}

m By Schwarz's Theorem, the tensor V¥ f(z) is symmetric.
m Multidimensional Newton Formula :

k . .
(h1 4 ho + -+ hyp)®F = > ; i)hig’”®“-®h§“’,
i1,..,0p€{0,....k} Lyeeestp
i1+ tip=k
where (, ¥ ) = £ is the p-nomial coefficient.
1yeerip iplip!
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Polynomial minimum

m We assume instead that x* is a strictly polynomial minimum of order 2p > 2 i.e.
in a neighbourhood of x*,

k * Rk
Z k'v ) - h®F > 0.
Find a1, ..., ag > 0and B € O4(R) such that
1
Vh €RY, [f(@* + B (0, t%ha)) = f(@)] = 9(ba, - ha),

where g : R% — R is non constant in any of its coordinates.

m Example : one-dimensional case : Let m be the polynomial order of z*, then

(m) (g%
L e = gy oy T

hm
t—0 m!

(m)(,.*
Then a1 = 1/m and g(h) = £ (x L0 pm
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Expansion of f at a local minimum with degenerate derivatives for 2p =

= Notations : pr : R? — F the orthogonal projection, Ty, := V* f(x*).
m For2p=4:

F:={heR?: Ty -h®2 =0} ={heR?: Ty -h® = 0%},
and E = F+ so
RI=E@F
m Apply Taylor and Newton formulas up to order 4 to

= [+ () + () — 7]

S0 T (2p(h) + 1) 4+ o(1)

4 . .
= i ‘k‘ t%-‘r%—lTk.p h®i1®p h)®i2 4 o(1
E F
t—0 k! 11,12
k=2"" i1 ,i2€{0,....k}
i14ia=k
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If % + %2 — 1 > 0 then it converges to 0
m By definition of F', for all b/, T2 - pr(h) @ b/ = 0.

By the minimum condition :

1

5113 Pr(W)? +o(h?) 2 0

U@+ pp() — f)
= T3-pr(M)®* =0
m We obtain

1 1 1
(2) — 5T2 pe(h)®? + ZT4 pr(h)®* + 5T3 -pe(h) ® pp(h)®?

m Since z* is polynomial of order 4 then T4 > 0 on F’ so the limit function is not
constant in any of its coordinates.

/A\The odd cross term in T3 can be non null, for example

f@,y) = 2% +y* + ay?
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Hilbert's 17th problem

We would like to proceed by induction as before, for example considering
Fy:={heF: Ty h®* =0}.

Ty is a symmetric tensor so we can write
q .
Vhe F, Ty h® =" ni(v', h)t.
i=1

And since
VheF, Ty-h® >0,

we could think that the \; are positive, which would give a linear characterization of
F5. However this is not always the case :

Hilbert's 17th problem

Let P be a non-negative polynomial homogeneous of even degree. Find polynomials

Py, ..., P such that P=3" | P2

—> This problem does not always have a solution.
= F35 is not always a subspace! (not even a sub-manifold!)
e Counter example : P(X,Y,2) = (X —Y)?(X — Z)2.
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Expansion up to 2p = 8

We now consider the subspaces
Fpi={h€F,_1: YN € F_1, V*f(z*) h@WOZ~1 =0},

and Ej, the orthogonal complement of Fj, in Fy_q.

£y Fy
To =0
Ey Fy
T> >0 Ty =0
Ty 20 Es3 F3
Te >0 | T =0

Table — lllustration of the subspaces

RE=E, @ E;® E3® F3 and Ey := F3.
We expand

[+ 2, () + A (B) + O (1) + P () - F@D)] (3)

1 k S WY ; ;
=> = X (7 )T b, 08 @ pg, (0
2 i ia€{0, k) bt
i1+ +ig=k

® Py (M8 @ pg, (M) + 0(1).

Pierre Bras (PhD Student under the direction of Gilles Pagés)



[ If%+~~~+%4—1>0,then it converges to 0.

m We need to prove that
29 i ®i1 ®i4 _
2+~~-+8 1<0:>Tk-pE1(h) ®-~~®pE4(h) =0.

m Example : Prove that for all h € R and b/ € Fy» = E3 & Eu,
Ts - pg, (h) ® (h)®2? = 0. We prove

Vh € RY, T - pp, (h) ® pr, (R)®2 = 0.

Indeed, using the expansion for 2p = 4 we have :
1
7@ 02, () + 1Oy () = f(a®)]

1 1
Z . ®2 it . ®2 >
o0 512 pE (W + S Ts - pE, (h) @ pry ()7 2 0.

Replacing h by Ah, A € R, we have for all A € R :

22 A3
7T2 pg, (R)®? + ?Ta pg, (h) ® pr, (R)®% > 0,

so necessarily Vh € R%, T5 - pp, (h) @ pr, (h)®2 = 0.
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Expansion up to 2p = 8

We finally obtain :

1 1 1
(3) — S Topmy ()2 45 Tspm,y (N) ¥ @pi, (h)+ 5 Tapi, (M) @PE, (W)@pm, (B) ¥+

Order 2 (2,0,0,0)

Order 3 (2,1,0,0)

Order 4 | (0,4,0,0), (1,1,0,2), (1,0,3,0)
Order 5 | (1,0,0,4), (0,2,3,0), (0,3,0,2)
Order 6 | (0,1,3,2), (0,2,0,4), (0,0,6,0)
Order 7 (0,1,0,6), (0,0,3,4)
Order 8 (0,0,0,8)

Table — Terms expressed as 4-tuples in the expansion
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Case 2p > 10

m Up to p = 8, the proof relies on positiveness arguments due to the minimum
property. However, if there exists a tuple (i1, ...,%p) such that the exponent

%1 4+t ;—‘; — 1 < 0 and all the i}, are even, then this argument fails.

m Such terms do not occur for p < 8 but do occur for p > 10, for example with
(0,2,0,0,4).

m Under the technical assumption that for such values of (i1,...,%p),
Tk *PEq (h)®l1 R ® PEp (h’)®1p = 07

(with k =41 +--- +ip), we prove a similar expansion for p > 10.
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Going back to Gibbs measures and coercivity problems

m We choose

1 11 1 1 1
(Cll,.“,lld): P R e R I LI R I Ry
2 24y 2 2%
—— —— —_———
dim(Ey) dim(Ez) dim(Ep)

and the basis B adapted to the decomposition R = F1 & --- & Ep.
m So that

% [f(:l?* +B- (talhl,' . "tadhd) - f(!l‘*)] - g(hlw . '7hd)7

where g is a non-negative polynomial function expressed before ; this satisfies the
assumption of [Athreya-Hwang 2010] in the case where some derivatives of f are

degenerate.
m The conclusion is that
B~1.X -t
(( t)l,...,(B Xt)d)iX ast— 0
o1 ted

where the distribution of X has a density proportional to e~ 9(¥1:--%a)

m However, e~ 9 might be not in L'(R%); this happens when g is not coercive, for
example f(z,y) = (z —y?)? + 2%, g(z,y) = (z —y*)%

m We give methods to deal with simple non-coercive cases, but we do not give a
general formula.
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Thank you for your attention !
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