Convergence rates of Gibbs measures with degenerate minimum

Pierre Bras (PhD Student under the direction of Gilles Pagès)

Sorbonne Université - LPSM

10 June 2021

UNIVERSITÉ

Optimization problem

Let
$$
f: \mathbb{R}^d \to \mathbb{R}
$$
 be C^1 , coercive (i.e. $f(x) \to +\infty$ as $|x| \to \infty$) and let $\operatorname{argmin}(f) := \{x \in \mathbb{R}^d : f(x) = \min_{\mathbb{R}^d} f\}$.

Objective find $\argmin(f)$.

• Example : Regression as an optimization problem

 $-\,\{\Phi_x:\ x\in\mathbb{R}^d\}$ family of functions $\Phi_x:\mathbb{R}^{d'}\to\mathbb{R}$ parametrized by $x\in\mathbb{R}^d$ (e.g. Φ_x is a neural function).

– for $1\leq i\leq N$, $(u_i,v_i)\in \mathbb{R}^{d'}\times \mathbb{R}$: data associated to a regression problem - We want to find x such that for all i, $\Phi_x(u_i) \approx v_i$

$$
\implies \text{ Find } \min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N (\Phi_x(u_i) - v_i)^2 =: \min_{x \in \mathbb{R}^d} f(x).
$$

• Gradient descent algorithm : compute the gradient and "go down" the gradient with step $\gamma > 0$

 $x_0 \in \mathbb{R}^d$ $x_{n+1} = x_n - \gamma \nabla f(x_n).$

• The continuous version is $Y_s = -\nabla f(Y_s)ds$.

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

• Problem : x_n can be "trapped" !

• We add a white noise to x_n , hoping to escape traps:

$$
x_{n+1} = x_n - \gamma \nabla f(x_n) + \sqrt{\gamma} \sigma \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, I_d).
$$

• The continuous version becomes :

$$
dY_s = -\nabla f(Y_s)ds + \sigma dW_s
$$
 (Langevin Equation)
= $-\nabla f(Y_s)ds + \sqrt{2t}dW_s$,

.

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

where (W_s) is a Brownian motion. $(\triangle t$ is not the time but a parameter, with $t = \sigma^2/2$). \bullet Assuming that $e^{-f/t} \in L^1(\mathbb{R}^d)$, it is invariant measure is the <code>Gibbs</code> measure

$$
\pi_t(x)dx = C_t e^{-f(x)/t} dx
$$

$$
C_t = \left(\int_{\mathbb{R}^d} e^{-f(x)/t} dx\right)^{-1}
$$

• For small t, the Gibbs measure π_t is concentrated around $\operatorname{argmin}(f)$. Assuming that $f^{\star}=0$

$$
\forall \varepsilon > 0, \ \pi_t \{ f \ge \varepsilon \} \underset{t \to 0}{\longrightarrow} 0.
$$

Indeed, we have

$$
C_t \leq \left(\int_{f \leq \varepsilon/3} e^{-\frac{f(x)}{t}} dx \right)^{-1} \leq \left(e^{-\frac{\varepsilon}{3t}} \int_{f \leq \varepsilon/3} dx \right)^{-1}.
$$

If $f(x)\geq \varepsilon$ then $e^{-\frac{f(x)}{t}}\leq e^{-\frac{2\varepsilon}{3t}}e^{-\frac{f(x)}{3t}}$ and then

$$
\pi_t \{ f \ge \varepsilon \} = C_t \int_{f \ge \varepsilon} e^{-f(x)/t} dx \le e^{\frac{\varepsilon}{3t}} \left(\int_{f \le \varepsilon/3} dx \right)^{-1} e^{-\frac{2\varepsilon}{3t}} \int_{\mathbb{R}^d} e^{-\frac{f(x)}{3t}} dx
$$

$$
\le \left(\int_{f \le \varepsilon/3} dx \right)^{-1} \left(\int_{\mathbb{R}^d} e^{-f(x)} dx \right) e^{-\frac{\varepsilon}{3t}} \xrightarrow[t \to 0]{} 0.
$$

• Solve the Langevin Equation for small $t > 0$, which gives an approximation of $argmin(f)$.

 \implies What is the quality of this approximation?

• Another method is to make t slowly decrease to 0 inside the Langevin Equation $dY_s = -\nabla f(Y_s)ds + \sqrt{2t(s)}dW_s$ with $t(s) \to 0$ as $s \to \infty$ ([Chiang-Hwang-Sheu 1987], [Gelfand-Mitter 1990]). [Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

Simplest case $\operatorname{argmin}(f) = \{x^*\}, \nabla f(x^*) = 0$ and $\nabla^2 f(x^*) > 0$. Then

$$
\pi_t \frac{\mathscr{L}}{t \to 0} \delta_{x^\star} \quad \text{(Dirac measure)}
$$
\n
$$
\pi_t(x)dx = C_t e^{-f(x)/t} dx \simeq C_t e^{-\frac{1}{2t}x^\top \cdot \nabla^2 f(x^\star) \cdot x} dx
$$
\n
$$
\frac{1}{\sqrt{t}} (X_t - x^\star) \xrightarrow[t \to 0]{} X \sim \mathcal{N}(0, (\nabla^2 f(x^\star))^{-1})
$$

where $X_t \sim \pi_t$ converges to x^\star at speed \sqrt{t} .

Multiple well case (Hwang 1980) : $\operatorname{argmin}(f) = \{x_1^{\star}, \ldots, x_m^{\star}\}$ and for all i , $\nabla^2 f(x_i^{\star}) > 0$ Then

$$
\pi_t \longrightarrow \frac{1}{\sum_{j=1}^m \det^{-1/2}(\nabla^2 f(x_j^*))} \sum_{i=1}^m \det^{-1/2}(\nabla^2 f(x_i^*)) \delta_{x_i^*}
$$

$$
\frac{1}{\sqrt{t}} (X_{it} - x_i^*) \underset{t \to 0}{\longrightarrow} X_i \sim \mathcal{N}(0, (\nabla^2 f(x_i^*))^{-1}),
$$

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

where X_{it} has the law of X_t conditionally to $||X_t - x_i^\star|| < r$.

Rate of convergence of Gibbs measures

■ Degenerate case

Theorem (Athreya-Hwang, 2010)

Assume that $min(f) = 0$, $argmin(f) = \{0\}$, and that there exist $\alpha_1, \ldots, \alpha_d > 0$ and $q: \mathbb{R}^d \to \mathbb{R}$ such that

$$
\forall (h_1, \dots, h_d) \in \mathbb{R}^d, \frac{1}{t} f(t^{\alpha_1} h_1, \dots, t^{\alpha_d} h_d) \xrightarrow[t \to 0]{} g(h_1, \dots, h_d) \in \mathbb{R}.
$$

$$
\int_{\mathbb{R}^d} \sup_{0 < t < 1} e^{-\frac{f(t^{\alpha_1} h_1, \dots, t^{\alpha_d} h_d)}{t}} dh_1 \dots dh_d < \infty.
$$

Then

$$
\left(\frac{(X_t)_1}{t^{\alpha_1}},\ldots,\frac{(X_t)_d}{t^{\alpha_d}}\right)\xrightarrow{\mathscr{L}} X \text{ as } t \to 0 \tag{1}
$$

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

where $X_t \sim \pi_t$ and where the distribution of X has a density proportional to $e^{-g(x_1,...,x_d)}$

Question : How can we find such $\alpha_1, \ldots, \alpha_d$ and g?

In the case where $\nabla^2 f(x^\star) > 0$ then let $B \in \mathcal{O}_d(\mathbb{R})$ such that $\nabla^2 f(x^\star) = B \mathsf{Diag}(\beta_{1:d}) B^\top$ and take $\alpha_1, \ldots, \alpha_d = 1/2$ so that

$$
\frac{1}{t}(f(x^* + t^{1/2}B \cdot h) - f(x^*)) \xrightarrow[t \to 0]{} \frac{1}{2} \sum_{i=1}^d \beta_i h_i^2 := g(h)
$$

Derivatives tensors

- We focus on the case where $\mathrm{argmin}(f) = \{x^\star\}$ and where $\nabla^2 f(x^\star)$ is not denite.
- **Multi-dimensional Taylor-Young formula**

$$
f(x+h) = \sum_{h=0}^{p} \frac{1}{k!} \nabla^k f(x) \cdot h^{\otimes k} + ||h||^p o(1),
$$

where

$$
\nabla^k f(x) = \left(\partial_{i_1,...,i_k}^k f(x)\right)_{i_1,i_2,...,i_k \in \{1,...,d\}}
$$

and

$$
h^{\otimes k} = h \otimes \cdots \otimes h = (h_{i_1} \ldots h_{i_k})_{i_1, i_2, \ldots, i_k \in \{1, \ldots, d\}}
$$

are tensors of order k , and where for T a k -tensor and v^1,\ldots,v^k k vectors in \mathbb{R}^d ,

$$
T \cdot v^1 \otimes \cdots \otimes v^k = \sum_{i_1,\ldots,i_k \in \{1,\ldots,d\}} T_{i_1,\ldots,i_k} v^1_{i_1} \ldots v^k_{i_k}.
$$

By Schwarz's Theorem, the tensor $\nabla^k f(x)$ is symmetric. **Multidimensional Newton Formula**

$$
(h_1 + h_2 + \cdots + h_p)^{\otimes k} = \sum_{\substack{i_1, \ldots, i_p \in \{0, \ldots, k\} \\ i_1 + \cdots + i_p = k}} {k \choose i_1, \ldots, i_p} h_1^{\otimes i_1} \otimes \cdots \otimes h_p^{\otimes i_p},
$$

where $\binom{k}{i_1,...,i_p}=\frac{k!}{i_1!\cdots i_p!}$ is the p nomial coefficient. [Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

We assume instead that x^\star is a strictly polynomial minimum of order $2p>2$ i.e. in a neighbourhood of x^* ,

$$
\sum_{k=1}^{2p} \frac{1}{k!} \nabla^k f(x^*) \cdot h^{\otimes k} > 0.
$$

Objective

Find $\alpha_1, \ldots, \alpha_d > 0$ and $B \in \mathcal{O}_d(\mathbb{R})$ such that

$$
\forall h \in \mathbb{R}^d, \quad \frac{1}{t} \left[f(x^* + B \cdot (t^{\alpha_1} h_1, \dots, t^{\alpha_d} h_d)) - f(x^*) \right] \xrightarrow[t \to 0]{} g(h_1, \dots, h_d),
$$

where $g : \mathbb{R}^d \to \mathbb{R}$ is non constant in any of its coordinates.

Example : one-dimensional case : Let m be the polynomial order of x^* , then

$$
\frac{1}{t}(f(x^* + t^{1/m}h) - f(x^*)) \xrightarrow[t \to 0]{} \frac{f^{(m)}(x^*)}{m!}h^m.
$$

Then
$$
\alpha_1 = 1/m
$$
 and $g(h) = \frac{f^{(m)}(x^*)}{m!}h^m$.

Expansion of f at a local minimum with degenerate derivatives for $2p = 4$

\n- Notations:
$$
p_F : \mathbb{R}^d \to F
$$
 the orthogonal projection, $T_k := \nabla^k f(x^*)$
\n- For $2p = 4$:
\n- $F := \{h \in \mathbb{R}^d : T_2 \cdot h^{\otimes 2} = 0\} = \{h \in \mathbb{R}^d : T_2 \cdot h^{\otimes 1} = 0^{\otimes 1}\},$ and $E = F^{\perp}$ so $\mathbb{R}^d = E \oplus F$.
\n

Apply Taylor and Newton formulas up to order 4 to

$$
\frac{1}{t} \left[f(x^* + t^{1/2} p_E(h) + t^{1/4} p_F(h)) - f(x^*) \right]
$$
\n
$$
= \frac{1}{t} \sum_{k=2}^4 \frac{1}{k!} T_k \cdot (t^{1/2} p_E(h) + t^{1/4} p_F(h))^{\otimes k} + o(1)
$$
\n
$$
= \sum_{t \to 0}^4 \frac{1}{k!} \sum_{\substack{i_1, i_2 \in \{0, \dots, k\} \\ i_1 + i_2 = k}} {k \choose i_1, i_2} t^{\frac{i_1}{2} + \frac{i_2}{4} - 1} T_k \cdot p_E(h)^{\otimes i_1} \otimes p_F(h)^{\otimes i_2} + o(1)
$$
\n(2)

- If $\frac{i_1}{2} + \frac{i_2}{4} - 1 > 0$ then it converges to 0
- By definition of F, for all h' , $T_2 \cdot p_F(h) \otimes h' = 0$.

 \blacksquare By the minimum condition

$$
\frac{1}{t}[f(x^* + p_F(h)) - f(x^*)] = \frac{1}{3!}T_3 \cdot p_F(h)^{\otimes 3} + o(h^3) \ge 0
$$

\n
$$
\implies T_3 \cdot p_F(h)^{\otimes 3} = 0
$$

We obtain

$$
(2) \longrightarrow \frac{1}{2}T_2 \cdot p_E(h)^{\otimes 2} + \frac{1}{4!}T_4 \cdot p_F(h)^{\otimes 4} + \frac{1}{2}T_3 \cdot p_E(h) \otimes p_F(h)^{\otimes 2}
$$

- Since x^\star is polynomial of order 4 then $T_4>0$ on F so the limit function is not constant in any of its coordinates.
- \blacksquare \land The odd cross term in T_3 can be non null, for example

$$
f(x, y) = x^2 + y^4 + xy^2.
$$

We would like to proceed by induction as before, for example considering

$$
F_2 := \{ h \in F : T_4 \cdot h^{\otimes 4} = 0 \}.
$$

 T_4 is a symmetric tensor so we can write

$$
\forall h \in F, T_4 \cdot h^{\otimes 4} = \sum_{i=1}^q \lambda_i \langle v^i, h \rangle^4.
$$

And since

$$
\forall h \in F, T_4 \cdot h^{\otimes 4} \ge 0,
$$

we could think that the λ_i are positive, which would give a linear characterization of F_2 . However this is not always the case

Hilbert's 17th problem

Let P be a non-negative polynomial homogeneous of even degree. Find polynomials P_1, \ldots, P_r such that $P = \sum_{i=1}^r P_i^2$.

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

 \implies This problem does not always have a solution.

 $\implies F_2$ is not always a subspace ! (not even a sub-manifold !)

• Counter example $P(X, Y, Z) = (X - Y)^2 (X - Z)^2$.

Expansion up to $2p = 8$

We now consider the subspaces

$$
F_k := \{ h \in F_{k-1} : \ \forall h' \in F_{k-1}, \ \nabla^{2k} f(x^*) \cdot h \otimes h'^{\otimes 2k-1} = 0 \},
$$

and E_k the orthogonal complement of F_k in F_{k-1} .

E1			
	$T_2 = 0$		
	F2 E_2		
$T_2\geq 0$		$T_4 = 0$	
	$T_4\geq 0$	E_3	F2
		$T_6 > 0$	$T_6 = 0$

Table - Illustration of the subspaces

 $\mathbb{R}^d=E_1\oplus E_2\oplus E_3\oplus F_3$ and $E_4:=F_3.$

We expand

$$
\frac{1}{t} \left[f(x^{\star} + t^{1/2} p_{E_1}(h) + t^{1/4} p_{E_2}(h) + t^{1/6} p_{E_3}(h) + t^{1/8} p_{F_3}(h)) - f(x^{\star}) \right]
$$
\n
$$
= \sum_{k=2}^{8} \frac{1}{k!} \sum_{\substack{i_1, \dots, i_4 \in \{0, \dots, k\} \\ i_1 + \dots + i_4 = k}} \binom{k}{i_1, \dots, i_4} t^{\frac{i_1}{2} + \dots + \frac{i_4}{8} - 1} T_k \cdot p_{E_1}(h)^{\otimes i_1} \otimes p_{E_2}(h)^{\otimes i_2}
$$
\n
$$
\otimes p_{E_3}(h)^{\otimes i_3} \otimes p_{F_3}(h)^{\otimes i_4} + o(1).
$$

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

If $\frac{i_1}{2} + \cdots + \frac{i_4}{8} - 1 > 0$, then it converges to 0 .

We need to prove that

$$
\frac{i_1}{2} + \dots + \frac{i_4}{8} - 1 < 0 \implies T_k \cdot p_{E_1}(h)^{\otimes i_1} \otimes \dots \otimes p_{E_4}(h)^{\otimes i_4} = 0.
$$

Example : Prove that for all $h \in \mathbb{R}^d$ and $h' \in F_2 = E_3 \oplus E_4$, $T_3\cdot p_{E_1}(h)\otimes (h')^{\otimes 2}=0$ We prove

$$
\forall h \in \mathbb{R}^d, T_3 \cdot p_{E_1}(h) \otimes p_{F_2}(h)^{\otimes 2} = 0.
$$

Indeed, using the expansion for $2p = 4$ we have

$$
\frac{1}{t} \left[\left(f(x^* + t^{1/2} p_{E_1}(h) + t^{1/6} p_{F_2}(h)) - f(x^*) \right) \right]
$$

$$
\frac{1}{t \to 0} \frac{1}{2} T_2 \cdot p_{E_1}(h)^{\otimes 2} + \frac{1}{2} T_3 \cdot p_{E_1}(h) \otimes p_{F_2}(h)^{\otimes 2} \ge 0.
$$

Replacing h by λh , $\lambda \in \mathbb{R}$, we have for all $\lambda \in \mathbb{R}$.

$$
\frac{\lambda^2}{2}T_2\cdot p_{E_1}(h)^{\otimes 2}+\frac{\lambda^3}{2}T_3\cdot p_{E_1}(h)\otimes p_{F_2}(h)^{\otimes 2}\geq 0,
$$

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

so necessarily $\forall h\in\mathbb{R}^d, \,\, T_3\cdot p_{E_1}(h)\otimes p_{F_2}(h)^{\otimes 2}=0.$

We finally obtain :

$$
(3) \longrightarrow \frac{1}{2}T_{2}\cdot p_{E_{1}}(h)^{\otimes 2}+\frac{1}{2}T_{3}\cdot p_{E_{1}}(h)^{\otimes 2}\otimes p_{E_{2}}(h)+\frac{1}{2}T_{4}\cdot p_{E_{1}}(h)\otimes p_{E_{2}}(h)\otimes p_{E_{4}}(h)^{\otimes 2}+\ldots
$$

Table $-$ Terms expressed as 4-tuples in the expansion

- Up to $p = 8$, the proof relies on positiveness arguments due to the minimum property. However, if there exists a tuple (i_1, \ldots, i_p) such that the exponent $\frac{i_1}{2}+\cdots+\frac{i_p}{2p}-1 < 0$ and all the i_k are even, then this argument fails.
- Such terms do not occur for $p \leq 8$ but do occur for $p \geq 10$, for example with $(0, 2, 0, 0, 4)$.
- Under the technical assumption that for such values of (i_1, \ldots, i_p) ,

$$
T_k \cdot p_{E_1}(h)^{\otimes i_1} \otimes \cdots \otimes p_{E_p}(h)^{\otimes i_p} = 0,
$$

[Convergence rates of Gibbs measures with degenerate minimum](#page-0-0)

(with $k = i_1 + \cdots + i_p$), we prove a similar expansion for $p \ge 10$.

Going back to Gibbs measures and coercivity problems

We choose

$$
(\alpha_1, \ldots, \alpha_d) = \left(\underbrace{\frac{1}{2}, \ldots, \frac{1}{2}}_{\dim(E_1)} \underbrace{\frac{1}{4}, \ldots, \frac{1}{4}}_{\dim(E_2)} \ldots, \underbrace{\frac{1}{2p}, \ldots, \frac{1}{2p}}_{\dim(E_p)} \right)
$$

and the basis B adapted to the decomposition $\mathbb{R}^d = E_1 \oplus \cdots \oplus E_n$. ■ So that

$$
\frac{1}{t}[f(x^*+B\cdot (t^{\alpha_1}h_1,\ldots,t^{\alpha_d}h_d)-f(x^*)] \to g(h_1,\ldots,h_d),
$$

where q is a non-negative polynomial function expressed before; this satisfies the assumption of $[Athreya-Hwang 2010]$ in the case where some derivatives of f are degenerate.

The conclusion is that

$$
\left(\frac{(B^{-1}\cdot X_t)_1}{t^{\alpha_1}},\ldots,\frac{(B^{-1}\cdot X_t)_d}{t^{\alpha_d}}\right) \xrightarrow{\mathscr{L}} X \text{ as } t \to 0
$$

where the distribution of X has a density proportional to $e^{-g(x_1,...,x_d)}$.

- However, e^{-g} might be not in $L^1(\mathbb{R}^d)$; this happens when g is not coercive, for example $f(x,y) = (x - y^2)^2 + x^6$, $g(x,y) = (x - y^2)^2$.
- We give methods to deal with simple non-coercive cases, but we do not give a general formula.

Thank you for your attention !